VIRGINIA
TECH

P, NP and Intractability
CS 4104: Data and Algorithm Analysis

Yoseph Berhanu Alebachew
May 11, 2025

Virginia Tech



Table of contents

1. Introduction
2. The Clique Problem
3. Definitions

4. The Independent Set Problem

5. Conclusion



Introduction



Recap: Efficient Algorithms

e Throughout this course, we adopted a definition of efficient
algorithm to mean any algorithm with a polynomial running time.



Recap: Efficient Algorithms

e Throughout this course, we adopted a definition of efficient
algorithm to mean any algorithm with a polynomial running time.

e We call all these class of algorithms P.



Recap: Efficient Algorithms

e Throughout this course, we adopted a definition of efficient
algorithm to mean any algorithm with a polynomial running time.

e We call all these class of algorithms P.

o P refers to the fact that the algorithms have polynomial running
time.



Recap: Efficient Algorithms

Throughout this course, we adopted a definition of efficient

algorithm to mean any algorithm with a polynomial running time.

e We call all these class of algorithms P.
e P refers to the fact that the algorithms have polynomial running
time.

e This served as to identify problems with no known efficient solution



Recap: Efficient Algorithms

e Throughout this course, we adopted a definition of efficient
algorithm to mean any algorithm with a polynomial running time.

e We call all these class of algorithms P.

o P refers to the fact that the algorithms have polynomial running
time.

e This served as to identify problems with no known efficient solution

e However, we've seen that some modified versions of problems we
discussed don't have efficient solutions.
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e Throughout this course, we adopted a definition of efficient
algorithm to mean any algorithm with a polynomial running time.

e We call all these class of algorithms P.

o P refers to the fact that the algorithms have polynomial running
time.

e This served as to identify problems with no known efficient solution

e However, we've seen that some modified versions of problems we
discussed don't have efficient solutions.

e Instead, the best known algorithms for these class of problems are
exponential at best (if they exist).
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e Original Problem:
e Find the shortest path from a source node to a destination node in a
weighted graph.
e DP/Greedy Solution: Algorithms like Dijkstra’s algorithm or
Bellman-Ford algorithm solve this problem in polynomial time.

o Modified Problem:

e Introduce negative weight cycles in the graph, or constraints that
paths must pass through specific intermediate nodes or avoid certain
nodes altogether.

e Finding shortest paths in such modified graphs can make the
problem NP-hard or undecidable.
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e Original Problem:

e Find the shortest possible route that visits each city exactly once and
returns to the origin city.

e DP Solution: The problem can be solved using dynamic
programming with Held-Karp algorithm in O(n? % 2") time, which is
not polynomial but is the best known exact approach.

e Modified Problem:

e Introduce constraints such as visiting certain cities in a specific order
or having variable costs that depend on the sequence of cities visited.

e These constraints can turn the problem into an even more complex
version that remains NP-hard and lacks a known polynomial-time

solution.
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e Original Problem:
e Assign colors to the vertices of a graph so that no two adjacent
vertices share the same color using the fewest number of colors.
e Greedy/DP Solution: The problem can be approximated using
greedy algorithms, such as the Welsh-Powell algorithm, which can
provide a solution in polynomial time for certain types of graphs.

e Modified Problem:

e Introduce constraints such as specific vertices needing to be a certain
color or certain pairs of vertices needing to have different colors.

e Add restrictions where the coloring must adhere to additional
conditions, like distance constraints (vertices within a certain
distance must also have different colors).

e These modifications can turn the problem into an NP-hard problem,
making it infeasible to solve in polynomial time.
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Example: Observation

e Fine Line Between Easy and Hard Problems
e Problems that have efficient solutions can be easily modified to have
no known efficient solutions.
e The reverse is also true: hard problems can be solved efficiently if we
impose certain constraints on the problem definition.
e Practical Importance
e These problems are very practical in the real world, and having
efficient solutions for them can make a significant impact.
e Many of these problems are interconnected.
e Solving one hard problem could potentially lead to solutions for other
related problems.
e Role of Heuristics and Approximation Algorithms
e For problems that are difficult or impossible to solve exactly in
polynomial time, heuristics and approximation algorithms can provide
near-optimal solutions in a reasonable amount of time.
e Understanding when and how to use these techniques is crucial for
tackling real-world problems that are NP-hard.
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e Given an undirected graph, determine if there exists a clique of size
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The Clique Problem: NP

e No known polynomial-time solution exists for the last three

e Brute Force Solution: Check all possible subsets of vertices of size
k to see if they form a clique, which takes exponential time.

e Since verifying a proposed clique takes polynomial time the clique
problem is NP
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Definitions: Certificate

e A certificate is a solution to a problem that can be verified in
polynomial time.

e For NP problems, given a "yes" answer, a certificate exists that can
be checked quickly to confirm the answer is correct.
e Example: For the Hamiltonian Path problem, a certificate is a
specific sequence of vertices that forms a Hamiltonian Path.
e For Co-NP problems, given a "no" answer, a certificate exists that
can be checked quickly to confirm the answer is correct.
e Example: For the Composite Number problem, a Co-NP problem, a
certificate for a "no” answer (i.e., the number is prime) is a

demonstration that there are no factors other than 1 and the number
itself.
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P and NP

e A decision yes/no problem of input size n can be solved in O(n®)
time for any constant c, the problem is in the complexity class P
(Polynomial)

e E.g., Is the graph G a clique 7

e If, for all yes instances of a decision problem of input size , there
exists a certificate, that can be verified in polynomial time, we say
it is in class NP (Nondeterministic Polynomial)

e E.g., Is there a clique within G 7
e |f we find some magical procedure to propose a sub graph we can
verify if it is a clique in polynomial time
e These class of problems are yes heavy - we can check yes cases in
polynomial time - not the no cases

13



NP: General Outline

proc solve(input) :
// This step is not well defined, hence, non-deterministic
// If this step is done in polynomial time
// then we have a polynomial solution

certificates = generateAllPossibleSolutions(input)

// Verify the given solutions for the problem
// This should run in polynomial time
for certificate in certificates:
if verifySolution(input, certificate):
return certificate

return "No solution found"
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NP vs Co-NP

If you a have decision problem where negative instances are verified
in polynomial time but you don’t need to verify yes instances we say
they are Co-NP (Complement is in NP)

e PC NP

e PC Co— NP

e For any instance of a problem in P, an empty certificate is sufficient
e We can verify that it is yes or no in polynomial time

e x € NP is a statement of ease, not a statement of hardness

NP is an upper limit not a lower limit

15
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e P (Polynomial Time)

P is a class of problems that can be solved by an algorithm in
polynomial time.

Polynomial time means that the time complexity of the algorithm is
O(n¥) for some constant k, where n is the size of the input.
Examples: Sorting algorithms like Merge Sort and Quick Sort, and
searching algorithms like Binary Search.

e NP (Nondeterministic Polynomial Time)

NP is a class of problems for which a given solution can be verified in
polynomial time.

A problem is in NP if, for every instance where the answer is "yes,”
there is a certificate (or witness) that can be checked quickly (in
polynomial time) to confirm the answer.

Examples: Clique Problem, Satisfiability (SAT), Hamiltonian Path,

Subset Sum.
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e A problem is NP-hard if every problem in NP can be reduced to it in
polynomial time.
NP-hard problems are at least as hard as the hardest problems in NP.

Solving an NP-hard problem efficiently (in polynomial time) would
imply that P = NP.
NP-hard problems do not have to be in NP; they might not even

have solutions that can be verified in polynomial time.

Examples: Halting Problem, Traveling Salesman Problem (general
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Definitions: NP-Complete

A problem is said to be NP-Complete if it is in both NP and NP-hard

It is NP in that we can verify a certificate in polynomial time

It is NP-hard, meaning it we can reduce all NP problems to it

e Remember, in practice we only need to reduce one known NP-hard
problem

Problems in NP-complete have the property that they are difficult
but if one is solved efficiently, all will be solved automatically
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Definitions: NP-complete

e NP-complete

e NP-complete problems are a subset of NP problems that are both in
NP and NP-hard.

e A problem is NP-complete if it is in NP and as hard as any problem
in NP, meaning every problem in NP can be reduced to it in
polynomial time.

e |f any NP-complete problem can be solved in polynomial time, then
all problems in NP can be solved in polynomial time (P = NP).

e Examples: Satisfiability (SAT), Traveling Salesman Problem
(decision version), 3-SAT.
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NP vs NP-hard vs NP Complete

e NP-hard problems encompass both problems

NP-hard
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in NP and problems that are even harder.

22



NP vs NP-hard vs NP Complete

e NP-hard problems encompass both problems
in NP and problems that are even harder.

NP-hard

“

e All NP-complete problems are both in NP
and NP-hard.

22



NP vs NP-hard vs NP Complete

e NP-hard problems encompass both problems

NP-hard

“

in NP and problems that are even harder.

e All NP-complete problems are both in NP
and NP-hard.

e If any NP-complete problem can be solved in
polynomial time, then all NP problems can
be solved in polynomial time (P = NP).

22



NP vs NP-hard vs NP Complete

NP-hard problems encompass both problems
in NP and problems that are even harder.

NP-hard

All NP-complete problems are both in NP
and NP-hard.

If any NP-complete problem can be solved in

NP-complete

polynomial time, then all NP problems can
be solved in polynomial time (P = NP).
However, solving an NP-hard problem does

not necessarily provide a polynomial-time
solution for all NP problems
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NP vs NP-hard vs NP Complete

NP-hard problems encompass both problems
in NP and problems that are even harder.

NP-hard

All NP-complete problems are both in NP
and NP-hard.

If any NP-complete problem can be solved in

NP-complete

polynomial time, then all NP problems can
be solved in polynomial time (P = NP).
However, solving an NP-hard problem does

not necessarily provide a polynomial-time
solution for all NP problems

e Unless the problem is also NP-complete.

Image Source: https://medium.com/intuitionmath/p-np-would-mean-were-a-bunch-

of-dumb-apes-20c6e50f0ba3
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Decision Problems vs Optimization Problems

e Let's assume we can solve the clique decision problem in polynomial
time
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Decision Problems vs Optimization Problems

e Let's assume we can solve the clique decision problem in polynomial
time
e i.e., Is there a clique of size k in graph G
e Can we use it to find the size of the largest clique efficiently?
e Assume this solution is a produce called clque(G, k) and has a

running time of n°
e We can use search (binary or linear) for k = |G| — 0

e This takes |G| * n®, which is still polynomial
e What about identifying what the clique is?
e First find the maximum value k
e Then, try to remove a vertex one at a time and see if the remaining
graph is clique
e if it is not, this vertex is required in the largest clique so put it back

and continue to the other nodes
e Stop when you are left with k vertices
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The Independent Set Problem

e Given an undirected graph, determine if there exists an independent
set of size k.

e An independent set is a subset of vertices such that no two vertices
in the subset are connected by an edge.
e The problem can take different forms:

Is the graph G an independent set?

Is there an independent set within G?
Is there an independent set within G of size k?

Which nodes make such an independent set?

e No known polynomial-time solution exists for the last three forms.

e Brute Force Solution: Check all possible subsets of vertices of size
k to see if they form an independent set, which takes exponential
time.
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The Independent Set Problem: NP Complete

e We want to show that the Independent Set Problem problem is NP
Complete

e This means showing that it is both NP and NP hard

e To show it is NP means that if a certificate is generated for the
solution we can verify it with polynomial efficiency

e To show it is NP-Hard means to show that every NP-problem can be
polynomially reduced to it

e In practice, we don't need to show reduction for every problem

e We only need to show this for a well known NP-hard problem

e We'll assume the clique problem is NP-hard and we show the
reduction for it
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Reduction: Clique Problem to Independent Set

e Reduction: Transform an instance of the Clique problem into an
instance of the Independent Set problem.
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e Given a graph G and an integer k, the Clique problem asks if there
is a clique of size k in G.

e Construct a new graph G’ by taking the complement of G (i.e.,
create G’ where two vertices are adjacent in G’ if and only if they
are not adjacent in G).

e In the new graph G’, an independent set of size k in G’ corresponds
to a clique of size k in G.

e Therefore, solving the Independent Set problem on G’ can be used
to solve the Clique problem on G.

e This reduction shows that the Independent Set problem is NP-hard
because the Clique problem is NP-hard.
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Reduction: Time Complexity of Constructing the Complement

Graph

Constructing a new graph G’ by taking the complement of G
involves:

e Initializing G’ with the same set of vertices as G.

e For each pair of vertices (u, v):

e Check if there is an edge between v and v in G.
e If there is no edge in G, add an edge between v and v in G’.

e Time Complexity Analysis:

5) = "gH

e Each check and potential edge addition takes O(1) time.

e There are ( pairs of vertices to check.

Overall Time Complexity: O(n?).

e This means our reduction is a polynomial reduction

28



Reduction: Clique to Independent Set

e Start with the original graph G for the Clique problem.
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Reduction: Clique to Independent Set

e Start with the original graph G for the Clique problem.
e Create the complement graph G:
e Two vertices are connected in G’ if and only if they are not
connected in G.
e An independent set in G’ corresponds to a clique in G.
e For example, the independent set (A, B, C, D, E) in G’ corresponds
to the clique (A, B, C, D, E) in G.

Graph G (Clique problem) Graph G’ (Independent Set problem)
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Reduction: Note

e In this particular example reduction is symmetric

e If cligue <, independetset and independetset <, clique
e This is not the general case

e X<, YAY <, X
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e There are a number of questions that are still open in the P vs NP
domain

e P=NP?

e Part of the millennium prize challenges
e NP = co-NP ?
e P=NPNco-NP?

e EXP: Verification takes exponential time
e PSpace - Problems that can be verified

NP-hard

NP-complete

in polynomial space given unlimited time
e BPP - Problems that can be solved with

probabilistic algorithm in polynomial time
e BQP - Solvable via quantum computing
e Others: EXSpace, 2-Exp and even

unsolvable
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Conclusion

e Understanding computational intractability and reductions helps
classify problems and develop efficient algorithms.

e The study of NP-complete problems and their relationships with
other problems is crucial in computer science.

e In practice, we use reduction to show that a problem is difficult to
solve of practical purposes (i.e., intractable)

e An entire sub-field of CS/Math, called Computational complexity
theory, is dedicated to studying these issues
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