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Introduction



Maximum Flow and Minimum Cut

• Two rich algorithmic problems.

• Fundamental problems in combinatorial optimization.

• Beautiful mathematical duality between flows and cuts.

• Numerous non-trivial applications:

• Bipartite matching.

• Data mining.

• Project selection.

• Airline scheduling.

• Baseball elimination.

• Image segmentation.

• Network connectivity.

• Network reliability.

• Distributed computing.

• Egalitarian stable matching.

• Security of statistical data.

• Network intrusion detection.

• Multi-camera scene reconstruction.

• Gene function prediction.
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Flow Networks



Flow Networks

• Use directed graphs to model transportation networks:

• Edges carry traffic and have capacities.

• Nodes act as switches.

• Source nodes generate traffic, sink nodes absorb traffic.

• A flow network is a directed graph G = (V ,E )

• Each edge e ∈ E has a capacity ce > 0.

• There is a single source node s ∈ V .

• There is a single sink node t ∈ V .

• Nodes other than s and t are internal.

• In a flow network G = (V ,E ), an s-t flow is a function f : E → R+

such that:

• Capacity conditions: For each e ∈ E , 0 ≤ f (e) ≤ c(e).

• Conservation conditions: For each internal node v ,∑
e into v

f (e) =
∑

e out of v

f (e)

• The value of a flow is ν(f ) =
∑

e out of s f (e).
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Maximum-Flow Problem

• Input: A flow network G

• Solution: The flow with the largest value in G , where the maximum

is taken over all possible flows on G .

• Output should assign a flow value to each edge in the graph.

• The flow on each edge should satisfy the capacity condition.

• The flow into and out of each internal node should satisfy the

conservation conditions.

• The value of the output flow, i.e., the total flow out of the source

node in the output flow, must be the largest over all possible flows

on G .

• Assumptions:

1. No edges enter s, no edges leave t.

2. There is at least one edge incident on each node.

3. All edge capacities are integers.
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Greedy Algorithm

• No known dynamic programming algorithm.

• Let us take a greedy approach.

1. Start with zero flow along all edges.

2. Find an s-t path and push as much flow along it as possible.
3. Idea to increase flow:

• Push flow along edges with leftover capacity.

• If needed, undo flow on edges already carrying flow.
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Examples of Flows
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Examples of Flows
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Ford-Fulkerson Algorithm



Residual Graph

• Given a flow network G = (V ,E ) and a flow f on G , the residual

graph Gf of G with respect to f is a directed graph such that:

1. (Nodes) Gf has the same nodes as G .

2. (Forward edges) For each edge e = (u, v) ∈ E such that f (e) < c(e),

Gf contains the edge (u, v) with a residual capacity c(e)− f (e).

3. (Backward edges) For each edge e ∈ E such that f (e) > 0, Gf

contains the edge e′ = (v , u) with a residual capacity f (e).
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Augmenting Paths in a Residual Graph

• Let P be a simple s-t path in Gf .

• b = bottleneck(P, f ) is the minimum residual capacity of any edge

in P.

• The following operation augment(f ,P) yields a new flow f ′ in G :

• e is forward edge in Gf ⇒ flow increases along e in G .

• e = (u, v) is backward edge in Gf ⇒ flow decreases along (v , u) in

G .
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Running Example for Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm Pseudocode

Algorithm 1 Ford-Fulkerson Algorithm

Require: Graph G with capacities c(u, v), source s, sink t

Ensure: Maximum flow f from s to t

1: initialize flow f (u, v) = 0 for all edges (u, v) ∈ G

2: while there is a path p from s to t in the residual graph Gf do

3: find residual capacity cf (p) = min{cf (u, v) | (u, v) ∈ p}
4: for all edges (u, v) in p do

5: increase flow f (u, v) by cf (p)

6: decrease flow f (v , u) by cf (p)

7: end for

8: end while

9: return f
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s-t Cuts and Capacities



s-t Cuts and Capacities

• An s-t cut is a partition of V into sets A and B such that s ∈ A and

t ∈ B.

• Capacity of the cut (A,B) is:

c(A,B) =
∑

e out of A

c(e) =
∑

e=(u,v),u∈A,v∈B

c(e)

• Intuition: For every flow f and for every s-t cut (A,B),

ν(f ) ≤ c(A,B).
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Flows and Cuts

• Let f denote the flow computed by the Ford-Fulkerson algorithm.

• Enough to show ∃s-t cut (A∗,B∗) such that ν(f ) = c(A∗,B∗).

• When the algorithm terminates, the residual graph has no s-t path.

• Claim: If f is an s-t flow such that Gf has no s-t path, then there is

an s-t cut (A∗,B∗) such that ν(f ) = c(A∗,B∗).
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Examples of Min Cut
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Examples of Min Cut

s

u

v

t

2

4

4

2

6

Min cut value: 8

14



Examples of Min Cut

s

u

v

t

2

4

4

2

6

Min cut value: 10

14



Examples of Min Cut
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Max-Flow Min-Cut Theorem

• The flow f computed by the Ford-Fulkerson algorithm is a maximum

flow.

• Given a flow of maximum value, we can compute a minimum s-t cut

in O(m) time.

• In every flow network, there is a flow f and a cut (A,B) such that

ν(f ) = c(A,B).

• Max-Flow Min-Cut Theorem: In every flow network, the maximum

value of an s-t flow is equal to the minimum capacity of an s-t cut.

• Corollary: If all capacities in a flow network are integers, then there

is a maximum flow f where f (e), the value of the flow on edge e, is

an integer for every edge e in G .
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