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Introduction



Divide and Conquer: Definition

• Divide and conquer refers to a class of algorithmic techniques.

• Process:

• Break: Divide the input into several parts.

• Solve: Solve the problem in each part recursively.

• Combine: Combine the solutions to these subproblems into an

overall solution.

• Characteristics:

• Simplicity: Often a straightforward method.

• Power: Can be a powerful technique for solving complex problems

• Will also become useful when we discuss other design techniques

(e.g., Dynamic Programming)
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Divide and Conquer: Runtime

• Involves solving a recurrence relation.

• Bounds the running time recursively.

• Analyze in terms of the running time on smaller instances.

• Previous Lectures (Greedy Algorithms):

• Brute Force Approach: Exponential running time.

• Greedy Algorithm: Reduced running time to polynomial.

• Divide and Conquer (most of the time):

• Natural Brute-Force Algorithm: May already be polynomial time.

• Strategy: Serves to reduce the running time to a lower polynomial.

• For example, the brute-force algorithm for finding the closest pair

among n points in the plane would measure all Θ(n2) distances, for

a (polynomial) running time of Θ(n2).

• Using divide and conquer will improve the running time to O(nlogn).
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The Sorting Problem

• Sorting is a common problem

• As a reminder it is the process of arranging elements in a specific

order

• Common orders include numerical and lexicographical.

• Formal Problem Statements:

• Input: A sequence of n numbers a1, a2, . . . , an.

• Output: A permutation a′1, a
′
2, . . . , a

′
n of the input sequence such

that a′1 ≤ a′2 ≤ . . . ≤ a′n.

• Basic algorithms such as Bubble, Insertion and Selection Sort have

O(n2

• Can we do better? Can we use divide and conquer approach
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Mergesort: The Algorithm

Algorithm 1 Mergesort

1: procedure Mergesort(A, left, right)

2: if left < right then

3: mid =(left + right)/2

4: Mergesort(A, left, mid)

5: Mergesort(A, mid + 1, right)

6: Merge(A, left, mid, right)

7: end if

8: end procedure

5



Mergesort: The Algorithm

Algorithm 2 Mergesort - Merge Procedure
1: procedure Merge(A, left, mid, right)

2: n1 = mid - left + 1

3: n2 = right - mid

4: create arrays L[1..n1] and R[1..n2]

5: for i = 1ton1 do

6: L[i ] = A[left + i − 1]

7: end for

8: for j = 1 to n2 do

9: R[j] = A[mid + j]

10: end for

11: i = 1, j = 1

12: for k = left to right do

13: if i <= n1 and (j > n2 or L[i] <= R[j]) then

14: A[k] = L[i]

15: i = i + 1

16: else

17: A[k] = R[j]

18: j = j + 1

19: end if

20: end for

21: end procedure
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Mergesort: Example

• Initial Array:

38 27 43 3 9 82 10

• Split Step 1:

38 27 43 3 9 82 10

• Split Step 2:

38 27 43 3 9 82 10

• Split Step 3:

38 27 43 3 9 82 10
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Mergesort: Example

• Merge Step 1:

38 27 43 3 9 82 10

• Merge Step 2:

27 38 3 43 9 82 10

• Merge Step 3:

3 27 38 43 9 10 82

• Sorted Array:

3 9 10 27 38 43 82
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Mergesort: Example

• Merge Step 1:

38 27 43 3 9 82 10

• Merge Step 2:

27 38 3 43 9 82 10

• Merge Step 3:

3 27 38 43 9 10 82

• Sorted Array:
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Mergesort: Example

• Merge Step 1:

38 27 43 3 9 82 10
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Mergesort: Example

• Merge Step 1:

38 27 43 3 9 82 10

• Merge Step 2:

27 38 3 43 9 82 10

• Merge Step 3:

3 27 38 43 9 10 82

• Sorted Array:

3 9 10 27 38 43 82
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Mergesort: Correctness

• Correctness:

• Each step of dividing and merging ensures the subarrays are sorted.

• Final merge produces a completely sorted array.

• Merging two sorted lists by picking the smallest item from the head

of each list at a time ensures the end result is sorted

• Proof by induction:

• Base Case: Single element arrays are trivially sorted.

• Inductive Step: Merging two sorted arrays in picking the smallest

item from the two heads maintains order.

• Termination: The algorithm terminates when all elements are

merged back together
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Mergesort: Runtime

• Recurrence Relation: T (n) = 2T (n/2) + O(n)

• Divide the array into two halves.

• Recursively sort each half.

• Merge the halves in linear time.

Poll 1

• Solution:

• Using the Master Theorem (Will discuss later):

• a = 2, b = 2, f (n) = O(n)

• T (n) = O(nlogn)

• Time Complexity:

• Best, Average, and Worst Case: O(nlogn)
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Solving Recurrences

• How can we solve for T (n) = 2T (n/2) + n?

• How to find the asymptotic bound

• Three methods:

• Recursive Tree

• Converts the recurrence into a tree.

• Draw the recursion tree.

• Sum the costs of all levels.

• Substation Method

• Substitute inside the equation

• Master theorem

• Check cases and use the rule
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Recursive Tree: Example 1

• Example: Solve T (n) = 2T (n/2) + n.
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Question: What patterns can we observe from the tree structure?

12



Recursive Tree: Example 1

• Pattern for T (n) = 2T (n/2) + n.

• Level 0: 2(n) = n = 20(n/20)

• Level 1: 2(n/2) = n = 21(n/21).

• Level 2: 4(n/4) = n = 22(n/22).

• Level 3: 8(n/8) = n = 23(n/23).

• Level i: 2i (n/2i ).

• Sum the cost at each level

• Lets say the height of the tree is h

• Then T (n) = h ∗ n

Questions:

• What will be the maximum value of i ?

• What will be the height the tree ?
• What will be the cost of a node at the leaf ?

• Poll 2

The value of (n/x) becomes 1

• How many leaves will the tree have
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Recursive Tree: Example 2

• Example: Solve T (n) = 3T (n/2) + log n.
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Recursive Tree: Example 2

• Pattern for T (n) = 3T (n/2) + log n.

• Level 0: log n.

• Level 1: 3 · log (n/2).
• Level 2: 32 · log (n/4).
• Level 3: 33 · log (n/8).
• Level i: 3i · log (n/2i ).

• Sum the cost at each level.

• Then T (n) is the sum of the costs of all levels.

Questions:

• What will be the maximum value of i?

• What will be the height of the tree?

• What will be the cost of the node at the leaf?

• How many leaves will the tree have?

Poll 3

• Sum up to log n levels:
∑log n

i=0 3i log(n/2i ).

• Simplify the series to find the overall complexity.
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Recursive Tree: Example 2

• Given the sum:
∑log n

i=0 3i log
(
n
2i

)
.

• Rewrite the term inside the summation:

3i log
( n

2i

)
= 3i log n − 3i i log 2

• Split the sum:
log n∑
i=0

3i log n −
log n∑
i=0

3i i log 2

• Analyze the first sum:

log n∑
i=0

3i log n = log n

log n∑
i=0

3i

• The geometric series sum:

log n∑
i=0

3i =
3log n+1 − 1

2
≈ 3nlog 3

2
= O(nlog 3)

• Therefore:

log n · O(nlog 3) = O(nlog 3 log n)
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Recursive Tree: Example 2

• Analyze the second sum:
∑log n

i=0 3i i log 2 = log 2
∑log n

i=0 3i i

• The sum
∑log n

i=0 3i i is dominated by its largest term when i ≈ log n:

log n∑
i=0

3i i ≈ (log n)3log n = (log n)nlog 3

• Therefore:

log 2 · O((log n)nlog 3) = O((log n)nlog 3)

• Combining both sums:

log n∑
i=0

3i log
( n

2i

)
= O(nlog 3 log n) + O((log n)nlog 3)

• The first term dominant so our overall complexity is: O((log n)nlog 3)
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Substitution Method: Introduction

• The substitution method is used to find asymptotic bounds on

recurrence relations.

• Steps:

• Guess the form of the solution.

• Use mathematical induction to find constants and show the solution

fits.

• You can use recursion tree to guess the solution

Question:

• Why is guessing the form of the solution important in the

substitution method?

• What happens if our initial guess for T (n) is incorrect?

Poll 4
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Substitution Method: Example 1

• Solve T (n) = 2T (n/2) + n.

• Guess: T (n) = O(n log n).

• Task: Show T (n) ≤ c(n log n).

• Base case: for T (1), can find a constant c such that T (1) ≤ c.

• Inductive step: assume T ( k
2
) ≤ c k

2
log k

2
for a k

2
< n.

• Now show for k that T (k) ≤ c(k log k)

T (k) = 2T (
k

2
) + k

• Replace T ( k
2
) from our assumption

T (k) ≤ 2c
k

2
log

k

2
+ k

T (k) ≤ ck log k − ck log 2 + k

• Since our base for log is 2 log 2 = 1

T (k) ≤ ck log k − ck + k

T (k) ≤ ck log k − (c − 1)k

• Notice (c − 1)k is a positive number, therefore

T (k) ≤ ck log k ⇒ T (k) = O(k log k) 19



Substitution Method: Example 2

• Solve T (n) = 3T (n/3) + n.

• Guess: T (n) = O(n log n).

• Task: Show T (n) ≤ c(n log n).

• Base case: for T (1), we can find a constant c such that T (1) ≤ c.

• Inductive step: assume T ( k
3
) ≤ c k

3
log k

3
for a k

3
< n.

• Now show for k that T (k) ≤ c(k log k)

T (k) = 3T (
k

3
) + k

• Replace T ( k
3
) from our assumption

T (k) ≤ 3c
k

3
log

k

3
+ k

T (k) ≤ ck log k − ck log 3 + k

• Combine terms:

T (k) ≤ ck log k − (c log 3− 1)k

• Notice (c log 3− 1)k is a positive number, therefore

T (k) ≤ ck log k ⇒ T (k) = O(k log k)
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Master Theorem: Introduction

• The Master Theorem provides a straightforward way to solve

recurrences of the form:

T (n) = aT (n/b) + f (n)

• It applies to divide-and-conquer algorithms where the problem is

divided into a subproblems, each of size n/b, and f (n) represents

the cost outside the recursive calls.

• Advantages:

• Provides a quick method to determine the time complexity of

recursive algorithms.

• Helps in identifying the dominant term in the recurrence.

• Limitations:

• Not applicable to all types of recurrences, especially those with

non-polynomial f (n).

• Assumes that the recurrence divides the problem into equal-sized

subproblems.
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Master Theorem

• For a ≥ 1andb > 1 in a recursion of the form

T (n) = aT (n/b) + f (n)

• Master defines three cases:

• If f (n) = O(nlogb a), then T (n) = O(nlogb a).

• If f (n) = Θ(nlogb a), then T (n) = O(nlogb a log n).

• If f (n) = Ω(nlogb a), and if af (n/b) ≤ kf (n) for some k < 1 and

sufficiently large n, then T (n) = O(f (n)).

• Important considerations:

• The function f (n) must be polynomially bounded.

• The Master Theorem does not apply if f (n) is not in the form of

O(nc).

• More generally the function f (n) should be positive and

asymptotically non-decreasing. .
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Master Theorem: Examples

• Solve T (n) = 2T (n/2) + n.

• Here, a = 2, b = 2, and f (n) = n.

• logb a = log2 2 = 1

• Compare f (n) = n with nlogb a = n1

• Case 2: f (n) = O(nlogb a)

• Therefore, T (n) = O(n log n).

• Solve T (n) = 3T (n/4) + log n.

• Here, a = 3, b = 4, and f (n) = log n.

• logb a = log4 3 ≈ 0.792

• Compare f (n) = log n with nlogb a = n0.792

• Case 1: f (n) = O(nlogb a)

• Therefore, T (n) = O(nlogb a) = O(n0.792).
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Master Theorem: Examples

• Solve T (n) = 4T (n/2) + n2.

• Here, a = 4, b = 2, and f (n) = n2.

• logb a = log2 4 = 2

• Compare f (n) = n2 with nlogb a = n2

• Case 2: f (n) = Θ(nlogb a)

• Therefore, T (n) = O(nlogb a log n) = O(n2 log n).

• Solve T (n) = 3T (n/2) + n3.

• Here, a = 3, b = 2, and f (n) = n3.

• logb a = log2 3 ≈ 1.585

• Compare f (n) = n3 with nlogb a = n1.585

• Case 3: f (n) = Ω(nlogb a)

• Also, af (n/b) ≤ kf (n) for some k < 1

• Therefore, T (n) = O(f (n)) = O(n3).
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Example Problems



Counting Inversions: The Problem

• An inversion in an array A[1 . . . n] is a pair of indices (i , j) such that

i < j and A[i ] > A[j ].

• The problem is to count the number of inversions in the array.

• Inversions indicate how far the array is from being sorted.

• Consider the array A = [2, 4, 1, 3, 5]

• The inversions are:

• (2, 1)

• (4, 1)

• (4, 3)

• Thus, the total number of inversions is 3.

• How many inversion does the array A = [2, 6, 4, 3, 8, 11] ?

• Answer: 3 ⇒ (6, 4), (6, 3), (4, 3)

Question: How many inversions does a completely sorted array have?
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Counting Inversions: Brute-force solution

• A simple approach is to use a nested loop to count all inversions.

Algorithm 3 Brute-force Inversion Count

1: count = 0

2: for i = 1 to n − 1 do

3: for j = i + 1 to n do

4: if A[i ] > A[j ] then

5: count = count + 1

6: end if

7: end for

8: end for

9:

10: return count

Question: What is the time complexity of this brute-force solution? Poll 5
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Counting Inversions: Divide and Conquer algorithm

• We can use a divide-and-conquer approach, similar to merge sort, to

count inversions more efficiently.

• The idea is to:

• Divide the array into two halves.

• Count the inversions in each half.

• Count the inversions that cross the two halves.

• This approach can reduce the time complexity significantly.

Question: What if we use merge sort as is and count the number of time

we picked the item from the right halve on the merge step ? Poll 6
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Counting Inversions: Pseudo-code

Algorithm 5 Counting Inversions
1: function countingInversions(arr, n)

2: return mergeSort(arr, 0, n-1)

3: function mergeSortCountInversion(arr, left, right)

4: inv = 0

5: if left ¡ right then

6: mid = (left + right) // 2

7: inv += mergeSortCountInversion(arr, left, mid)

8: inv += mergeSortCountInversion(arr, mid + 1, right)

9: inv += merge(arr, left, mid, right)

10: end if

11: return inv
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Counting Inversions: Pseudo-code

Algorithm 6 Merge Initialization
1: function merge(arr, left, mid, right)

2: i = left, j = mid + 1, inv = 0

3: while i ≤ mid and j ≤ right do

4: if arr[i] ≤ arr[j] then

5: i = i + 1

6: else

7: temp = arr[j]

8: shift arr[i:j-1] right

9: arr[i] = temp

10: inv += (mid - i + 1)

11: i = i + 1

12: mid = mid + 1

13: j = j + 1

14: end if

15: end while

16: while j ≤ right do

17: temp = arr[j]

18: shift arr[i:j-1] right

19: arr[i] = temp

20: inv count += (mid - i + 1)

21: i = i + 1

22: mid = mid + 1

23: j = j + 1

24: end while

25: return inv count
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Counting Inversions: Example

• Consider the array A = [2, 4, 1, 3, 5]

• Initial array:

2 4 1 3 5

2 4 1 3 5

2 4 1 3 5

2 4 1 3 5
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Counting Inversions: Example

Inversions: 0

• Merge and Count Inversions:

2 4 1 3 5
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2 4 1 3 5
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Counting Inversions: Example

Inversions: 3

• Merge and Count Inversions:

1 2 4 3 5
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Counting Inversions: Example

Inversions: 3

• Merge and Count Inversions:

1 2 3 4 5
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Counting Inversions: Correctness

• The divide-and-conquer algorithm correctly counts inversions

because:

• It divides the array into two halves and counts inversions in each half.

• It counts the inversions that cross the two halves during the merge

step.

• The correctness follows from the correctness of merge sort, where

each element is compared and merged correctly.
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Counting Inversions: Running Time

• The time complexity of the divide-and-conquer algorithm can be

analyzed as follows:

• The recurrence relation is T (n) = 2T (n/2) + O(n).

• This is the same as merge sort, which solves to T (n) = O(n log n).

• Therefore, the running time of the inversion counting algorithm is

O(n log n).

Question: How does the time complexity of the divide-and-conquer

approach compare to the brute-force solution?
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Counting Inversions: Applications

• Sorting and Order Statistics:
• Counting inversions can measure how far an array is from being

sorted.

• Useful in evaluating and improving sorting algorithms.

• Genome Analysis:
• In bioinformatics, counting inversions helps in genome rearrangement

problems.

• Used to study the evolutionary distance between species by

comparing genome sequences.

• Rank Correlation:
• Spearman’s footrule and Kendall’s tau distance between two

rankings can be computed using inversion count.

• Important in statistics for comparing ranked lists.

• Network Theory:
• Inversions can help analyze network reliability and failure rates.

• Used to study the robustness of network topologies.

• In Economics:
• Counting inversions can model and analyze discrepancies in economic

indicators.

• Used in time series analysis to study economic trends and anomalies.

34



Closest Pair of Points: Problem Definition

• Given a set of points in a plane, find the pair of points with the

minimum Euclidean distance between them.

• Input: A set of points P = {(x1, y1), (x2, y2), . . . , (xn, yn)}.
• Output: The pair of points (p1, p2) such that the distance d(p1, p2)

is minimized.

• Applications:

• Computational geometry problems.

• Pattern recognition and clustering.

• Network design and layout optimization.
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Closest Pair of Points: Brute-force solution

• Algorithm:

• Initialize min dist to infinity.
• For each pair of points (pi , pj) in the set P:

• Compute the distance d(pi , pj ).

• If d(pi , pj ) < min dist, update min dist and the closest pair.

• Time Complexity: O(n2).

• This solution checks all possible pairs, making it inefficient for large

datasets.
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Closest Pair of Points: Divide and Conquer algorithm

• The divide-and-conquer approach improves efficiency.

• Steps:

• Sort the points by their x-coordinates.

• Recursively find the closest pair in the left and right halves.

• Find the closest pair that straddles the dividing line.

• Combine these results to find the overall closest pair.

• Time Complexity: O(n log n).
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Closest Pair of Points: Pseudo-code

Algorithm 7 Closest Pair of Points
1: function ClosestPair(P)

2: Sort P by x-coordinates

3: return ClosestPairRec(P)

4:

5: function ClosestPairRec(P)

6: if length(P) ≤ 3 then

7: return BruteForce(P)

8: end if

9: mid = length(P) / 2

10: L = P[1 . . .mid ]

11: R = P[mid + 1 . . . end ]

12: (p1, q1) = ClosestPairRec(L)

13: (p2, q2) = ClosestPairRec(R)

14: δ = min(d(p1, q1), d(p2, q2))

15: M = points in P within δ of the dividing line

16: (p3, q3) = ClosestSplitPair(M, δ)

17: return the pair with the smallest distance among (p1, q1), (p2, q2), and (p3, q3)
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Closest Pair of Points: Closest Split Pair Function

function ClosestSplitPair(M, δ)

Sort M by y-coordinates

best = δ

best pair = (nil , nil)

for i = 1 to length(M) do

for j = i + 1 to min(i + 7, length(M)) do

if d(M[i ],M[j ]) < best then

best = d(M[i ],M[j ])

best pair = (M[i ],M[j ])

end if

end for

end for

return best pair
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Closest Pair of Points: Visual Example - Base case

If there are less than 3 points
Compare the distance using the brute-force algorithm
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Closest Pair of Points: Visual Example - Base case

If there are less than 3 points
Compare the distance using the brute-force algorithm
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Closest Pair of Points: Visual Example - Base case

If there are less than 3 points
Compare the distance using the brute-force algorithm

This has a constant time complexity (three comparison)
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Closest Pair of Points: Visual Explanation

Input
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Closest Pair of Points: Visual Explanation

Sort the points based on their x value
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Closest Pair of Points: Visual Explanation

Split them in two halves
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Closest Pair of Points: Visual Explanation

Midline
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Closest Pair of Points: Visual Explanation

Find closest pairs in each half (done through a recursive call )

δl

δr
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Closest Pair of Points: Visual Explanation

δl

δr

Compare δr and δl and take the smallest
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Closest Pair of Points: Visual Explanation

Let say δl is the smallest and we take that as δ

δ
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Closest Pair of Points: Visual Explanation

δ

Check if there is a pair that has a smaller distance than
δ that has a point in each of the halves
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Closest Pair of Points: Visual Explanation

δ

The naive way to do this is, to pair every point in one half
with all points in the other and check the distance is lower than δ
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Closest Pair of Points: Visual Explanation

δ

The naive way to do this is, to pair every point in one half
with all points in the other and check the distance is lower than δ

This won’t be any better than the brute-force algorithm
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Closest Pair of Points: Visual Explanation

δ

Notice we really don’t need to check for points that are
more than δ away from the midpoint (x-value)

2δ

41



Closest Pair of Points: Visual Explanation

δ
2δ

Even within this band, for a point we only need to check it’s
pairing to points that are a maximum of δ away in their y-value

δ

δ
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Closest Pair of Points: Visual Explanation

δ
2δ

δ

If we sort the points within this band by their y-value, for each point,
we only need to check the points within δ distance in one direction
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Closest Pair of Points: Visual Explanation

δ
2δ

δ

How will this reduce the number of points we need tp check ?
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Closest Pair of Points: Visual Explanation

δ
2δ

δ

Claim: with these constraints, we only need to check a maximum
of 6 points for each point in the band?

This makes comparing crossing points a constant time operation, per point
Meaning the upper bound of this operation will be O(n)
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Closest Pair of Points: Visual Explanation

δ

If we find a smaller distance, this new pair will be our closest pair of points
at this level of the recursion

δnew
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Closest Pair of Points: Takeaway

• How did the divide and conquer improve the runtime?

• Notice how the actual check is still a brute force method

• What changed is the candidates we need to consider at each step

• How did the approach help us reduce the brute force checks we

make ?

• By having the smallest distance in both halves, it gave us a cut-off

point to remove most of the point from consideration
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Closest Pair of Points: Correctness

• The divide-and-conquer algorithm correctly finds the closest pair of

points.

• The correctness follows from:

• The correctness of the recursive calls to find the closest pairs in the

left and right halves.

• The correctness of the merge step to find the closest split pair.

• Ensuring that all potential closest pairs are considered.

Question: Why does the merge step only consider points within δ of the

dividing line?
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Closest Pair of Points: Running Time

• The time complexity of the divide-and-conquer algorithm can be

analyzed as follows:

• Sorting the points by x-coordinates takes O(n log n).

• The recursive calls each handle half the points, leading to 2T (n/2).

• The merge step takes O(n) time.

• The recurrence relation is T (n) = 2T (n/2) + O(n).

• Solving this using the Master Theorem gives T (n) = O(n log n).

• Therefore, the running time of the closest pair of points algorithm is

O(n log n).

Question: How does the time complexity of the divide-and-conquer

approach compare to the brute-force solution?
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Closest Pair of Points: Applications

• Computational Geometry:

• Widely used in geometric computations and computer graphics.

• Astronomy:

• Finding the closest stars or celestial objects in space.

• Geographical Information Systems (GIS):

• Finding the closest facilities (e.g., hospitals, schools) to a given

location.

• Networking:

• Optimizing the layout of network nodes to minimize latency.

• Clustering:

• Used as a subroutine in clustering algorithms to group points based

on proximity.
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Maximum Sub-array: The Problem

• Given an array of integers, find the contiguous sub-array (containing

at least one number) which has the largest sum.

• Example: For the array [−2, 1,−3, 4,−1, 2, 1,−5, 4], the contiguous

sub-array with the largest sum is [4,−1, 2, 1] with sum 6.

-2 1 -3 4 -1 2 1 -5 4

• The sub-array [4,−1, 2, 1] has the largest sum, which is 6.
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Maximum Sub-array: Brute-force Approach

• The naive approach involves checking all possible sub-array.

• Initialize a variable max sum to negative infinity.

• Iterate through each sub-array and calculate its sum.

• Update max sum if the current sub-array sum is greater.

Algorithm 8 Brute-force Maximum Sub-array
Require: Array arr of length n

1: max sum← −∞
2: for i ← 0 to n − 1 do

3: for j ← i to n − 1 do

4: current sum← 0

5: for k ← i to j do

6: current sum← current sum + arr [k]

7: end for

8: max sum← max(max sum, current sum)

9: end for

10: end for

11: return max sum

• Time Complexity: O(n3), where n is the length of the array.
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Maximum Sub-array: Divide and Conquer Approach

• The Divide and Conquer approach splits the array into two halves

and recursively finds the maximum sub-array sum.

• Algorithm:

• Divide the array into two halves.

• Recursively find the maximum sub-array sum in the left half and

right half.

• Find the maximum sub-array sum that crosses the midpoint.

• Return the maximum of the three sums.
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Maximum Sub-array: Pseudo-code

Algorithm 9 Divide and Conquer Maximum Sub-array

Require: Array arr of length n

Ensure: Maximum sub-array sum

1: if n = 1 then

2: return arr [0]

3: end if

4: mid ← ⌊n/2⌋
5: left max ← max subarray(arr , 0,mid − 1)

6: right max ← max subarray(arr ,mid , n − 1)

7: cross max ← max crossing subarray(arr , 0,mid , n − 1)

8: return max(left max , right max , cross max)
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Maximum Sub-array: Max Crossing Sub-array Pseudo-code

Algorithm 10 Max Crossing Sub-array
Require: Array arr , indices low , mid , high

Ensure: Maximum sub-array sum that crosses the midpoint

1: left sum← −∞
2: sum← 0

3: for i ← mid to low step −1 do

4: sum← sum + arr [i ]

5: if sum > left sum then

6: left sum← sum

7: end if

8: end for

9: right sum← −∞
10: sum← 0

11: for j ← mid + 1 to high do

12: sum← sum + arr [j]

13: if sum > right sum then

14: right sum← sum

15: end if

16: end for

17: return left sum + right sum
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Maximum Sub-array: Example

-2 1 -3 4 -1 2 1 -5 4
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Maximum Sub-array: Example

-2 1 -3 4 -1 2 1 -5 4

-2 1 -3 4 -1 2 1 -5 4
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Maximum Sub-array: Example

-2 1 -3 4 -1 2 1 -5 4

-2 1 -3 4 -1 2 1 -5 4

Right Sum: −∞ Left Sum: −∞
Sum: −∞ Sum: −∞

51



Maximum Sub-array: Example

-2 1 -3 4 -1 2 1 -5 4

-2 1 -3 4 -1 2 1 -5 4

Right Sum: 4 Left Sum: -1

Sum: 4 Sum: -1
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Maximum Sub-array: Example

-2 1 -3 4 -1 2 1 -5 4

-2 1 -3 4 -1 2 1 -5 4

Right Sum: 4 Left Sum: 1

Sum: 1 Sum: 1

51



Maximum Sub-array: Example

-2 1 -3 4 -1 2 1 -5 4

-2 1 -3 4 -1 2 1 -5 4

Right Sum: 4 Left Sum: 2

Sum: 2 Sum: 2
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Maximum Sub-array: Example

-2 1 -3 4 -1 2 1 -5 4

-2 1 -3 4 -1 2 1 -5 4

Right Sum: 4 Left Sum: 2

Sum: 0 Sum: -3
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Maximum Sub-array: Example

-2 1 -3 4 -1 2 1 -5 4

-2 1 -3 4 -1 2 1 -5 4

Right Sum: 4 Left Sum: 2

Sum: 0 Sum: 1
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Maximum Sub-array: Example

-2 1 -3 4 -1 2 1 -5 4

-2 1 -3 4 -1 2 1 -5 4

Max Crossing: 4 + 2 = 6
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Maximum Sub-array: Example

-2 1 -3 4 -1 2 1 -5 4

-2 1 -3 4 -1 2 1 -5 4

Max Left: 4 Max Right: 4

Max Crossing: 4 + 2 = 6
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Maximum Sub-array: Example

-2 1 -3 4 -1 2 1 -5 4

-2 1 -3 4 -1 2 1 -5 4

Max Left: 4 Max Right: 4

Max Crossing: 4 + 2 = 6

Max Sub-array : 6
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Maximum Subarray: Correctness

• The correctness of the Divide and Conquer approach follows from:

• The maximum subarray sum must be in the left half, the right half,

or cross the midpoint.

• The algorithm correctly identifies the maximum sum in each of these

cases.

• By combining the results, the approach guarantees the correct

maximum subarray sum.

Question: Why does the algorithm consider the cross sum?
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Maximum Subarray: Kadane’s Algorithm

• Kadane’s Algorithm provides an efficient way to solve the Maximum

Subarray problem.

• Algorithm:

• Initialize two variables: max so far to negative infinity and

max ending here to 0.

• Iterate through the array.

• At each element, add the element to max ending here.

• If max ending here is greater than max so far , update max so far .

• If max ending here is less than 0, reset it to 0.

• Time Complexity: O(n), where n is the length of the array.
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Maximum Subarray: Kadane’s Algorithm Pseudo-code

Algorithm 11 Kadane’s Algorithm

Require: Array arr of length n

Ensure: Maximum subarray sum

1: max so far ← −∞
2: max ending here ← 0

3: for i ← 0 to n − 1 do

4: max ending here ← max ending here + arr [i ]

5: if max so far < max ending here then

6: max so far ← max ending here

7: end if

8: if max ending here < 0 then

9: max ending here ← 0

10: end if

11: end for

12: return max so far
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Maximum Subarray: Correctness

• Assume the algorithm does not find the maximum subarray sum.

• Let max so far be the maximum sum found by Kadane’s Algorithm,

and let S be the actual maximum subarray sum.

• If max so far ̸= S , then there exists a subarray with a sum greater

than max so far .

• Kadane’s Algorithm updates max so far whenever max ending here

exceeds the current max so far .

• This means Kadane’s Algorithm would have updated max so far to

S when encountering the subarray with sum S .

• Therefore, max so far should have been updated to S , contradicting

the assumption.

• Hence, max so far = S , and Kadane’s Algorithm correctly finds the

maximum subarray sum.

55



Maximum Subarray: Runtime

• The Divide and Conquer approach has a time complexity of

O(n log n).

• The steps include:

• Dividing the array: O(log n) levels of recursion.

• Finding the maximum sum in each half: O(n) at each level.

• Overall, the algorithm is more efficient than the naive approach for

large arrays.

• Kadane’s Algorithm, on the other hand, runs in linear time O(n),

making it the most efficient solution for this problem.

Question: How does Kadane’s Algorithm improve upon the Divide and

Conquer approach in terms of complexity and implementation?
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Maximum Sub-array: Example Applications

• Financial Analysis:

• Identifying the period with the maximum profit in stock price

changes.

• Example: Finding the period during which a stock’s price increased

the most.

• Genomics:

• Analyzing DNA sequences to find regions with significant activity or

patterns.

• Example: Identifying the most active region in a sequence of gene

expression data.

• Signal Processing:

• Detecting the period with the highest signal strength in time-series

data.

• Example: Finding the time interval with the strongest signal in an

audio recording.
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Maximum Sub-array: Example Applications

• Image Processing:

• Locating the region with the highest intensity in an image.

• Example: Detecting the brightest spot in a satellite image.

• Computer Graphics:

• Enhancing regions in a graphical representation.

• Example: Highlighting areas in a graph with the highest

concentration of data points.

• Gaming:

• Calculating the highest score achieved in a game session.

• Example: Identifying the period during which the player accumulated

the highest score.
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Integer Multiplication: Background

• The problem we consider is an extremely basic one: the

multiplication of two integers.

• In a sense, this problem is so basic that one may not initially think

of it even as an algorithmic question.

• But, in fact, elementary schoolers are taught a concrete (and quite

efficient) algorithm to multiply two n-digit numbers x and y.

• You first compute a ”partial product” by multiplying each digit of y

separately by x, and then you add up all the partial products.

• This works for both base-10 and base-2 (i.e., binary) the same.

• The total running time for this algorithm is O(n2).

• It takes O(n) time to compute each partial product.

• There are n partial products.
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Integer Multiplication: Example Multiplications

Decimal Multiplication

2384

×7433
7152

71520

953600

16688000

17720272

Binary Multiplication

1011

×1101
1011

0000

101100

1011000

1000111111
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Integer Multiplication: Karatsuba Algorithm

• One approach to improve the running time of integer multiplication

is using a divide and conquer algorithm.

• Karatsuba algorithm is a famous example of this technique:

1. Split each number into two halves.

2. Multiply the parts recursively.

3. Combine the results to get the final product.

• In practice, the performance improvement is only worth it if the

number is large enough
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Integer Multiplication: Karatsuba Algorithm Pseudo-code

Algorithm 12 Karatsuba Algorithm

Require: Two integers x and y

1: if x < 10 or y < 10 then

2: return x × y

3: end if

4: n← max(size of x , size of y)

5: m← ⌈n/2⌉
6: high1, low1 ← split at(x ,m)

7: high2, low2 ← split at(y ,m)

8: z0 ← Karatsuba(low1, low2)

9: z1 ← Karatsuba(low1 + high1, low2 + high2)

10: z2 ← Karatsuba(high1, high2)

11: return (z2 × 102×m) + ((z1 − z2 − z0)× 10m) + z0
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Integer Multiplication: Karatsuba Algorithm Example

Step 1: Split the numbers

x = 43921⇒ high1 = 439, low1 = 21

y = 19543⇒ high2 = 195, low2 = 43

Step 2: Compute z0, z1, z2

z0 = Karatsuba(21, 43)→ 903

z1 = Karatsuba(460, 238)→ 109480

z2 = Karatsuba(439, 195)→ 85605

Step 3: Combine the results

m = ⌊5/3⌋
z1 − z2 − z0 = 109480− 85605− 903 = 22972

Result = (z2 × 102×2) + ((z1 − z2 − z0)× 102) + z0
= (85605× 104) + (22972× 102) + 903

= 856050000 + 2297200 + 903

= 858348103
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Integer Multiplication: Karatsuba Algorithm Example

Step 2.1: Compute z0: Karatsuba(21, 43)

21⇒ high1 = 2, low1 = 1

43⇒ high2 = 4, low2 = 3

z0 = (2× 4× 102×1) + ((2 + 1)(4 + 3)− 2× 4− 1× 3)× 101 + (1× 3)

= 903

Step 2.2: Compute z1: Karatsuba(460, 238)

460⇒ high1 = 46, low1 = 0

238⇒ high2 = 23, low2 = 8

z1 = 109480

Step 2.3: Compute z2: Karatsuba(439, 195)

439⇒ high1 = 43, low1 = 9

195⇒ high2 = 19, low2 = 5

z2 = 85605
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Integer Multiplication: Runtime

• Naive algorithm runtime: O(n2).

• The runtime recurrence: T (n) = 3T (n/2) + O(n)

• Karatsuba algorithm runtime: O(nlog2 3) ≈ O(n1.585).

• Other algorithms:

• Toom-Cook multiplication: O(n1.465).

• Schönhage-Strassen algorithm: O(n log n log log n).

• Fastest known algorithm (Fürer’s algorithm): O(n log n2O(log∗ n)).

• Each algorithm provides different trade-offs in terms of

implementation complexity and performance.
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Integer Multiplication: Takeaway

• Integer multiplication is a fundamental problem with various

algorithmic solutions.

• The naive approach is simple but less efficient for large numbers.

• Advanced algorithms like Karatsuba, Toom-Cook, and

Schönhage-Strassen offer better performance.

• Understanding these algorithms provides insight into algorithm

design and optimization techniques.
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Matrix Multiplications: Problem Definition

• Given two n × n matrices A and B, compute the product matrix

C = A× B.

• Traditional matrix multiplication algorithm runs in O(n3) time.

• Can we use divide and conquer to improve the performance ?
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Strassen’s Algorithm: Idea

• Strassen’s algorithm breaks down one n × n matrix multiplication

into seven n
2 ×

n
2 matrix multiplications.

• This reduces the number of multiplications required compared to the

traditional algorithm.

• The algorithm uses the following key identities to achieve this:

M1 = (A11 + A22)(B11 + B22)

M2 = (A21 + A22)B11

M3 = A11(B12 − B22)

M4 = A22(B21 − B11)

M5 = (A11 + A12)B22

M6 = (A21 − A11)(B11 + B12)

M7 = (A12 − A22)(B21 + B22)
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Strassen’s Algorithm: Idea

• The resultant submatrices are then combined to form the final

product matrix.

C11 = M1 +M4 −M5 +M7

C12 = M3 +M5

C21 = M2 +M4

C22 = M1 −M2 +M3 +M6
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Strassen’s Algorithm: Pseudo-code

Algorithm 13 Strassen’s Algorithm
Require: Two n × n matrices A and B

Ensure: Product matrix C = A × B

1: if n == 1 then

2: return C = A × B

3: end if

4: Partition A and B into four submatrices of size n
2

× n
2

5: Compute the seven products using Strassen’s identities:

6: M1 = (A11 + A22)(B11 + B22)

7: M2 = (A21 + A22)B11
8: M3 = A11(B12 − B22)

9: M4 = A22(B21 − B11)

10: M5 = (A11 + A12)B22
11: M6 = (A21 − A11)(B11 + B12)

12: M7 = (A12 − A22)(B21 + B22)

13: Compute the resulting submatrices:

14: C11 = M1 + M4 − M5 + M7
15: C12 = M3 + M5
16: C21 = M2 + M4
17: C22 = M1 − M2 + M3 + M6
18: Combine C11, C12, C21, C22 into the final matrix C

19: return C
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Strassen’s Algorithm: Example

Example: Multiply two 2x2 matrices using Strassen’s algorithm

A =

(
1 3

7 5

)
, B =

(
6 8

4 2

)

• Compute the seven products:

M1 = (1 + 5)(6 + 2) = 6× 8 = 48

M2 = (7 + 5)6 = 12× 6 = 72

M3 = 1(8− 2) = 1× 6 = 6

M4 = 5(4− 6) = 5× (−2) = −10
M5 = (1 + 3)2 = 4× 2 = 8

M6 = (7− 1)(6 + 8) = 6× 14 = 84

M7 = (3− 5)(4 + 2) = −2× 6 = −12
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Strassen’s Algorithm: Example

• Compute the resulting submatrices:

C11 = M1 +M4 −M5 +M7 = 48− 10− 8− 12 = 18

C12 = M3 +M5 = 6 + 8 = 14

C21 = M2 +M4 = 72− 10 = 62

C22 = M1 −M2 +M3 +M6 = 48− 72 + 6 + 84 = 66

• Combine the submatrices into the final matrix:

C =

(
18 14

62 66

)
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Strassen’s Algorithm: Runtime

• The traditional matrix multiplication algorithm runs in O(n3) time.

• Strassen’s algorithm divides each n × n matrix into four n
2 ×

n
2

submatrices.

• Performs seven recursive multiplications on these submatrices.

• Additionally, performs a constant number of matrix additions and

subtractions, each taking O(n2) time.

T (n) = 7T
(n
2

)
+ O(n2)

• Strassen’s algorithm reduces the time complexity to approximately

O(n2.81).

• This is achieved by reducing the number of recursive multiplications

from 8 to 7.

• The improved runtime comes at the cost of additional additions and

subtractions.
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Strassen’s Algorithm: Takeaway

• Strassen’s algorithm demonstrates that matrix multiplication can be

performed more efficiently than the traditional O(n3) approach.

• It laid the groundwork for further research in fast matrix

multiplication algorithms.

• Practical implementations need to consider the trade-offs between

reduced multiplication operations and increased addition/subtraction

operations.

• Strassen’s algorithm is especially useful for large matrices where the

reduction in multiplication operations significantly improves

performance.
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Convolution: Problem Definition

• Given two vectors a = (a0, a1, . . . , an−1) and b = (b0, b1, . . . , bn−1),

there are a number of common ways of combining them.

• One can compute the sum, producing the vector

a+ b = (a0 + b0, a1 + b1, . . . , an−1 + bn−1).

• One can compute the inner product, producing the real number

a · b = a0b0 + a1b1 + . . .+ an−1bn−1.

• Another means of combining vectors, very important in applications,

is the convolution a ∗ b.
• The convolution of two vectors of length n (as a and b are) is a

vector with 2n − 1 coordinates, where coordinate k is equal to:

(a ∗ b)k =
k∑

i=0

aibk−i for 0 ≤ k < 2n − 1
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Convolutions: Motivating Example 1 - Dice

• Let’s say you are throwing a pair of dice and would like to know the

chances of getting a certain combination

• E.g., What are the chances of getting a 1 and 2 ?

• Let’s assume the die is fair and it is equally likely to get any of the

faces

Die A 1 2 3 4 5 6

Die B 1 2 3 4 5 6
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Convolutions: Motivating Example 1 - Dice

2 (1)

Die 1

1 2 3 4 5 6

1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)

2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)

3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)

4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)

5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)

6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
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Convolutions: Motivating Example 1 - Dice

3 (2)

Die 1

1 2 3 4 5 6

1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)

2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)

3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)

4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)

5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)

6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)

77



Convolutions: Motivating Example 1 - Dice

4 (3)

Die 1

1 2 3 4 5 6

1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)

2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)

3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)

4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)

5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)

6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)

77



Convolutions: Motivating Example 1 - Dice

5 (4)

Die 1

1 2 3 4 5 6

1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)

2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)

3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)

4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)

5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)

6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
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Convolutions: Motivating Example 1 - Dice

6 (5)

Die 1

1 2 3 4 5 6

1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)

2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)

3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)

4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)

5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)

6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
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Convolutions: Motivating Example 1 - Dice

7 (6)

Die 1

1 2 3 4 5 6

1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)

2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)

3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)

4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)

5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)

6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)

77



Convolutions: Motivating Example 1 - Dice

8 (5)

Die 1

1 2 3 4 5 6

1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)

2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)

3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)

4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)

5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)

6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)

77



Convolutions: Motivating Example 1 - Dice

9 (4)

Die 1

1 2 3 4 5 6

1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)

2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)

3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)

4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)

5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)

6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
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Convolutions: Motivating Example 1 - Dice

10 (3)

Die 1

1 2 3 4 5 6

1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)

2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)

3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)

4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)

5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)

6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
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Convolutions: Motivating Example 1 - Dice

11 (2)

Die 1

1 2 3 4 5 6

1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)

2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)

3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)

4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)

5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)

6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
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Convolutions: Motivating Example 1 - Dice

12 (1)

Die 1

1 2 3 4 5 6

1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)

2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)

3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)

4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)

5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)

6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
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Convolutions: Motivating Example 1 - Dice

Die 1

1 2 3 4 5 6

1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)

2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)

3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)

4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)

5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)

6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)

• This takes O(n2)
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Convolutions: Motivating Example 1 - Dice

• Another way to look at this operation is as follows:

• Flip the second list

• Slide it one step at a time and count the probability

Die A 1 2 3 4 5 6

Die B 1 2 3 4 5 6
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Convolutions: Motivating Example 1 - Dice

• Another way to look at this operation is as follows:

• Flip the second list

• Slide it one step at a time and count the probability

Die A 1 2 3 4 5 6

Die B 6 5 4 3 2 1
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Convolutions: Motivating Example 1 - Dice

2 (1)

• Another way to look at this operation is as follows:

• Flip the second list

• Slide it one step at a time and count the probability

Die A 1 2 3 4 5 6

Die B 6 5 4 3 2 1
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Convolutions: Motivating Example 1 - Dice

3 (2)

• Another way to look at this operation is as follows:

• Flip the second list

• Slide it one step at a time and count the probability

Die A 1 2 3 4 5 6

Die B 6 5 4 3 2 1
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Convolutions: Motivating Example 1 - Dice

4 (3)

• Another way to look at this operation is as follows:

• Flip the second list

• Slide it one step at a time and count the probability

Die A 1 2 3 4 5 6

Die B 6 5 4 3 2 1
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Convolutions: Motivating Example 1 - Dice

5 (4)

• Another way to look at this operation is as follows:

• Flip the second list

• Slide it one step at a time and count the probability

Die A 1 2 3 4 5 6

Die B 6 5 4 3 2 1
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Convolutions: Motivating Example 1 - Dice

6 (5)

• Another way to look at this operation is as follows:

• Flip the second list

• Slide it one step at a time and count the probability

Die A 1 2 3 4 5 6

Die B 6 5 4 3 2 1
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Convolutions: Motivating Example 1 - Dice

7 (6)

• Another way to look at this operation is as follows:

• Flip the second list

• Slide it one step at a time and count the probability

Die A 1 2 3 4 5 6

Die B 6 5 4 3 2 1
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Convolutions: Motivating Example 1 - Dice

8 (5)

• Another way to look at this operation is as follows:

• Flip the second list

• Slide it one step at a time and count the probability

Die A 1 2 3 4 5 6

Die B 6 5 4 3 2 1
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Convolutions: Motivating Example 1 - Dice

9 (4)

• Another way to look at this operation is as follows:

• Flip the second list

• Slide it one step at a time and count the probability

Die A 1 2 3 4 5 6

Die B 6 5 4 3 2 1
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Convolutions: Motivating Example 1 - Dice

10 (3)

• Another way to look at this operation is as follows:

• Flip the second list

• Slide it one step at a time and count the probability

Die A 1 2 3 4 5 6

Die B 6 5 4 3 2 1
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Convolutions: Motivating Example 1 - Dice

11 (2)

• Another way to look at this operation is as follows:

• Flip the second list

• Slide it one step at a time and count the probability

Die A 1 2 3 4 5 6

Die B 6 5 4 3 2 1
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Convolutions: Motivating Example 1 - Dice

12 (1)

• Another way to look at this operation is as follows:

• Flip the second list

• Slide it one step at a time and count the probability

Die A 1 2 3 4 5 6

Die B 6 5 4 3 2 1

78



Convolutions: Motivating Example 1 - Dice

• Another way to look at this operation is as follows:

• Flip the second list

• Slide it one step at a time and count the probability

Die A 1 2 3 4 5 6

Die B 6 5 4 3 2 1

• Both of these examples assume the die is fair

• i.e, every face of both dice has equal probability of occurrence

• If that is not the case we can just replace the count by multiplication

• This algorithm for computing convolution is O(n2)
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Convolutions: Motivating Example 1 - Image Matrix

Image Matrix

A =


1 2 3 0

4 5 6 1

7 8 9 0

1 3 5 2


Kernel

K =

[
0 1

1 0

]

Convolution

A =



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Convolutions: Motivating Example 1 - Image Matrix

Image Matrix
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Convolutions: Motivating Example 1 - Image Matrix

Image Matrix

A =
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4 5 6 1
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Image Matrix
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Convolutions: Motivating Example 1 - Image Matrix

Image Matrix
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Convolutions: Motivating Example 1 - Image Matrix

Image Matrix
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Convolutions: Motivating Example 1 - Image Matrix

Image Matrix
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Image Matrix
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Convolutions: Motivating Example 1 - Image Matrix

Image Matrix

A =


1 2 3 0

4 5 6 1

7 8 9 0

1 3 5 2


Kernel

K =

[
0 1

1 0

]

Convolution

A =

 6 8 6

12 14 10

9 12 5


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Convolutions: Motivating Example 1 - Image Matrix

Convolving an image with an edge detector kernel. 1

1Source: https://developer.nvidia.com/discover/convolution
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Convolutions: Problem Definition

• Convolution:
• An operation on two functions f and g producing a third function

that expresses how the shape of one is modified by the other.

• Discrete Convolution: Given two sequences a and b, their

convolution c is defined as:

c[n] =
n∑

m=0

a[m] · b[n −m]

• Fast Fourier Transform (FFT):
• An efficient algorithm to compute the Discrete Fourier Transform

(DFT) and its inverse.

• The DFT of a sequence x of length N is given by:

X [k] =
N−1∑
n=0

x [n] · e−i2πkn/N

• Problem:
• Compute the convolution of two sequences efficiently using the FFT.

• Applications in signal processing, image processing, and solving

differential equations. 81



FFT: Pseudocode

Algorithm 14 FFT-based Convolution

Require: Sequences a and b of length N

Ensure: Convolution c of a and b

1: Compute the FFT of a: A← FFT(a)

2: Compute the FFT of b: B ← FFT(b)

3: Multiply pointwise in the frequency domain: C ← A · B
4: Compute the inverse FFT of C : c ← IFFT(C )

5: return c
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FFT: Divide and Conquer Algorithm

• The FFT can be used to compute convolutions efficiently.

• Steps:

• Compute the FFT of both sequences a and b.

• Multiply the resulting frequency-domain representations

element-wise.

• Compute the inverse FFT of the product to get the convolution

result.

• Time Complexity: O(n log n) due to the efficiency of the FFT.

83



FFT: Example

• Consider two sequences a = [1, 2, 3] and b = [4, 5, 6]

• Step 1: Compute the FFT of a and b

Sequence FFT Value

a [1, 2, 3] A[k] {6, -1.5 + 0.87i, -1.5 - 0.87i}
b [4, 5, 6] B[k] {15, -1.5 + 0.87i, -1.5 - 0.87i}

• Step 2: Multiply the FFT results element-wise

Value

C [0] = A[0] · B[0] 90

C [1] = A[1] · B[1] 0.75 - 2.6i

C [2] = A[2] · B[2] 0.75 + 2.6i

• Step 3: Compute the inverse FFT of C [k] to get the convolution

result

Convolution Result 4 13 28 27

18
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FFT: Example

• Consider two sequences a = [1, 2, 3] and b = [4, 5, 6]

• Step 1: Compute the FFT of a and b

Sequence FFT Value

a [1, 2, 3] A[k] {6, -1.5 + 0.87i, -1.5 - 0.87i}
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Value
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FFT: Correctness

• The correctness of the FFT-based convolution follows from:

• The correctness of the FFT and its inverse.

• The convolution theorem, which states that the pointwise product of

two sequences’ Fourier transforms is the Fourier transform of their

convolution.

• Thus, the algorithm correctly computes the convolution by

leveraging the FFT.

Question: Why is the convolution theorem crucial in this approach?
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FFT: Runtime

• The FFT-based convolution has a time complexity of O(n log n).

• The steps include:

• Computing the FFT of both sequences: O(n log n).

• Pointwise multiplication: O(n).

• Computing the inverse FFT: O(n log n).

• Overall, the algorithm is significantly faster than the brute-force

approach for large sequences.

Question: How does the runtime of the FFT-based approach compare to

the brute-force solution?
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FFT: Application

• Signal Processing:
• Used to filter signals, remove noise, and detect features in time-series

data.

• Image Processing:
• Used for image filtering, edge detection, and image convolution.

• Audio Processing:
• Enhances audio signals, equalizes sound frequencies, and applies

effects like reverb.

• Communications:
• Used in modulating and demodulating signals in communication

systems.

• Numerical Analysis:
• Solves differential equations, convolves functions, and applies integral

transforms.

• Machine Learning:
• Applies convolution operations in neural networks, especially in

Convolutional Neural Networks (CNNs) for image recognition and

classification tasks.
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Conclusion



Divide and Conquer Algorithms: Summary

• Definition:
• A strategy to solve a complex problem by breaking it down into

simpler sub-problems, solving each sub-problem recursively, and

combining their solutions to solve the original problem.

• Key Steps:
• Divide: Break the problem into smaller sub-problems.

• Conquer: Solve each sub-problem recursively.

• Combine: Merge the solutions of the sub-problems to form the

solution to the original problem.

• Examples:
• Merge Sort: Recursively splits the array in half, sorts each half, and

merges the sorted halves.

• Quick Sort: Partitions the array into sub-arrays around a pivot and

recursively sorts the sub-arrays.

• Binary Search: Recursively divides the search interval in half to find

an element in a sorted array.

• Strassen’s Matrix Multiplication: Divides matrices into smaller

sub-matrices and combines their products.
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Divide and Conquer Algorithms: Summary

• Applications:

• Sorting algorithms (e.g., Merge Sort, Quick Sort)

• Searching algorithms (e.g., Binary Search)

• Numerical algorithms (e.g., Fast Fourier Transform)

• Graph algorithms (e.g., Closest Pair of Points)

• Advantages:

• Often reduces time complexity compared to brute-force approaches.

• Provides a clear and recursive structure to solve problems.

• Challenges:

• Overhead of recursive calls.

• Combining solutions of sub-problems can be complex.

• Conclusion:

• Divide and Conquer is a powerful paradigm that provides efficient

solutions to many complex problems.

• Understanding its principles and applications is crucial for designing

effective algorithms.
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Divide and Conquer Algorithms: Other Examples

• Quicksort

• Power Of Numbers

• K th element of two Arrays

• Cooley–Tukey Fast Fourier Transform (FFT) algorithm

• The Painter’s Partition Problem-II

• Modular Exponentiation for large numbers

• Candy

• Sequence of Sequence

• Possible paths

• Scrambled String

• The N th Fibonnaci

• Killing Spree

• Convex Hull
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Questions?
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