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Reminders

e Course Survey (Due tomorrow)

e Homework 1 released
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Start discussion of different ways of designing algorithms.

o Greedy algorithms
e Divide and conquer
e Dynamic programming

e Discuss principles that can solve a variety of problem types

e Design an algorithm, prove its correctness, analyse its complexity

Greedy algorithms: make the current best choice.
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Interval Scheduling Problem
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e Input: Start and end time of each workshop.
e Goal: Compute the largest number of workshops you can be on in
one day
e Constraints:
e Cannot be in two places at one time.
e Workshops may overlap.
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Notice that we don't have a preference for workshops. We

are interested in the maximum number of workshops we can
attend.




Interval Scheduling Problem

Time

o Input: Set (s(i),f(i)),1 < i < n of start and finish times of n
workshops.

e Solution: The largest subset of mutually compatible workshops.



Interval Scheduling Problem

h
0t 2 3 4 5 6 7 8 9 10

Time

e Two workshops are compatible if they do not overlap.

e This problem models the situation where you have a resource, a set
of fixed jobs, and you want to schedule as many jobs as possible.

e For any input set of jobs, our algorithm must provably compute the
largest set of compatible jobs.
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Example: Compatibility
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e Which jobs/workshops are compatible?
e Aand F : No e D and E: No
e Band G : Yes e Eand G: No

e Cand H: Yes e Fand D : No
6
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e Check if the intervals in each subset are mutually compatible.

Track the largest subset that is compatible.
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Interval Scheduling Problem: Brute Force Algorithm

Generate all possible subsets of the given intervals.

e Check if the intervals in each subset are mutually compatible.

Track the largest subset that is compatible.
Is this algorithm efficient ? @IED
e There are 2" subsets and checking each subset for compatibility
takes O(n) time.
e The brute force algorithm has a time complexity of O(n - 2"), where

n is the number of intervals.
e This approach is computationally expensive for large n
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Interval Scheduling Problem: Greedy Algorithm Intuition

e Process jobs in some order.

e Add next job to the result if it is compatible with the jobs already in
the result.

e Key question: in what order should we process the jobs?

o Earliest start time: Increasing order of start time s(i).

Earliest finish time: Increasing order of finish time f(i).

Shortest interval: Increasing order of length f(i) - s(i).

Fewest conflicts: Increasing order of the number of conflicting jobs.



Interval Scheduling Problem: Greedy Algorithm with Earliest

Finish Time

Algorithm 1 Schedule intervals in order of earliest Finish time (EFT)
function intervalScheduling(S):
A=l
sort(S) // Sort based on finish time
while S is not empty:
// pop the workshop with the earliest finish time

workshop = S.pop()
A.push(workshop) // Add to the return list
for win S:
if not compatibleWith(workshop, w):
S.remove(w)
return A




Interval Scheduling Problem: Greedy Algorithm with Earliest

Finish Time

Algorithm 2 Schedule intervals in order of earliest Finish time (EFT)
function intervalScheduling(S):
A=l
sort(S) // Sort based on finish time
while S is not empty:

// pop the workshop with the earliest finish time
workshop = S.pop()
A.push(workshop) // Add to the return list
for win S:
if not compatibleWith(workshop, w):
S.remove(w)
return A

e Claim: A is a compatible set of jobs.



Earliest Finish Time Intuition for Proof of Correctness

e We need to prove that |A| (the number of jobs in A) is the largest
possible in any set of mutually compatible jobs.

e Key idea: The algorithm always makes the optimal choice by
selecting the job that finishes the earliest.

e This strategy leaves the most room for the remaining jobs,
maximizing the number of compatible jobs.

10



Earliest Finish Time : Detailed Proof of Correctness

e Let O be an optimal set of workshops.@ZED
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e Let O be an optimal set of workshops.@ZED

e We have to show that |O| == |A|
e Show elements in |O| and |A| are the same

o Let A={a1,an,...,ak} be the set of jobs selected by the algorithm,
ordered by finish time.
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Earliest Finish Time : Detailed Proof of Correctness

e Let O be an optimal set of workshops.@ZED

e We have to show that |O| == |A|
e Show elements in |O| and |A| are the same

o Let A={a1,an,...,ak} be the set of jobs selected by the algorithm,
ordered by finish time.

o Let O ={01,0p,...,0m} be an optimal set of jobs, ordered by finish
time, with m > k.

e We use induction to show that for all 1 < r < k, the finish time of
a, is less than or equal to the finish time of o,.

11



Proof of Correctness: Detailed

e Induction

e Initialization: r = 1. The first job a; selected by the algorithm has
the earliest finish time, so f(a1) < f(o1).
e Maintenance: Assume f(a;) < f(o;) for all i < r.

e Since a,41 is chosen to have the earliest finish time after a,,
f(ars1) < f(or41)-
e This maintains the property for a,;1.

e Now let's show that k = m (termination)

e Since both A and O are sets of mutually compatible jobs:

e |f there are more jobs in O than A, there must be some job in O
that can be replaced by a job in A without causing conflicts.

e Thus, the size of A is equal to the size of O:

e Both A and O contain the maximum number of compatible jobs.
e Therefore, the algorithm's solution is optimal.

12



Greedy Property

e The greedy property of the algorithm is the maximize the
available time after picking a job to add to the list.

e i.e., Leave maximum room for the remaining jobs/workshops

13
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e Input: Start and end time of each workshop.
e Goal: Compute the minimum number of rooms required to hold all
workshops without conflicts.
e Constraints:
e Workshop times may overlap.

e Two workshops can’t happen in the same room at the same time. 0



Interval Partitioning Problem
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Notice that we need to ensure that no two overlapping

workshops are scheduled in the same room.

14



Interval Partitioning Problem
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e Input: Set (s(i),f(i)),1 < i < n of start and finish times of n
workshops.

e Solution: The minimum number of rooms required to hold all
workshops.

15



Interval Partitioning Problem
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e Two workshops need separate rooms if they overlap.

e This problem models the situation where you have a set of
workshops and you want to minimize the number of rooms required.

e For any input set of workshops, our algorithm must provably

compute the minimum number of rooms required.
15



Example: Room Assignment
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Example: Room Assignment
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e How many rooms are needed for the following workshops?

e A, Band D : 3 room e C,Fand H: 2 rooms
e B, Cand D : 3 room e C,Eand H: 2 room
e A, Gand H : 2 room e B,Eand H: 1 rooms

16



Interval Partitioning Problem Greedy Algorithm: Idea

e Sort the workshops by their start times.

e Use a priority queue to manage end times of currently assigned
rooms.
e For each workshop:
e If the workshop can reuse an existing room (its start time is after the

earliest end time), assign it to that room.
e Otherwise, allocate a new room.

17



min-heap Data Structure

e A min-heap is a binary tree-based data structure where the parent
node is always less than or equal to its child nodes.

e This property ensures that the smallest element is always at the root
of the heap.
e Efficient operations:

e Retrieving the minimum element: O(1) time.
e Insertion and deletion of the minimum element: O(log n) time.

18



Interval Partitioning Problem Greedy Algorithm: Pseudocode

Algorithm 3 Assign rooms using a priority queue
function intervalPartitioning(S):
endTimes = [| // min-heap based priority queue sorted by end times
sort(S) // Sort intervals by start time
for each workshop in S:
if endTimes is not empty and endTimes[0] < start(workshop):
room = endTimes.heappop(endTimes) // Reuse room
else:
room = new room(workshop) // create new room
endTimes.heappush(endTimes)

return len(endTimes)

Question: In this algorithm we are only checking for the first endTimes.
why is that 7

19



Interval Partitioning Problem Greedy Algorithm: Pseudocode

Algorithm 4 Assign rooms using a priority queue
function intervalPartitioning(S):
endTimes = [| // min-heap based priority queue sorted by end times
sort(S) // Sort intervals by start time
for each workshop in S:
if endTimes is not empty and endTimes[0] < start(workshop):
room = endTimes.heappop(endTimes) // Reuse room
else:
room = new room(workshop) // create new room
endTimes.heappush(endTimes)

return len(endTimes)

Claim: The size of the priority queue at the end of the algorithm gives
the minimum number of rooms required.

19



Interval Partitioning Algorithm: Greedy Property

The greedy property of the algorithm ensures that we are

always minimizing the number of rooms used by reusing
rooms whenever possible.

20



Interval Partitioning Greedy Algorithm: Runtime Analysis

e Sorting the intervals by their start times takes O(nlog n) time.
e For each interval, we perform the following operations:

e Checking the earliest end time in the priority queue (min-heap) takes
O(1) time.

e Adding a new end time to the priority queue (min-heap) takes
O(log k) time, where k is the number of rooms.

e Removing the earliest end time from the priority queue (min-heap)
takes O(log k) time, where k is the number of rooms.

e Thus, processing each interval takes O(log k) time.

e Total runtime

Sorting the intervals: O(nlog n)
Processing each interval: O(nlog k)

e In the worst case, k = n (all intervals need separate rooms), so the
processing time is O(nlog n).

e Therefore, the total runtime of the algorithm is
O(nlog n) + O(nlog n) = O(nlog n).

21
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Scheduling to Minimise Lateness

e Job i has a length t(/) and a deadline d(i).

e We want to schedule all n jobs on one resource.

Our goal is to assign a starting time s(i) to each job such that each
job is delayed as little as possible.
A job i is late if (i) > d(i)

e Notice f(/) is not a given, it depends on how we decide to schedule a

job

The lateness of the job is
max (0, £ (i) — d(i))
The lateness of a schedule is max

(max(0, f(i) — d(i)))

max
1<i<n

e Note that the lateness is defined with a max not a sum

22



Scheduling to Minimise Lateness: Example

e Example 1:

t; 3

N
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Scheduling to Minimise Lateness: Example

e Example 1:

i |1]2
ti 3 2
d | 1] 3
e Which of the following is better
d =3 d =1 —> lateness = 7

§ ! I ! ! il ]
T T T T T

0 1 2 3 4 5 6 [lime

d=1 d =3 —> lateness = 7

0 1 2 3 4 5 6 [lime
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Scheduling to Minimise Lateness: Example

e Example 1:

i 1] 2
ti 3 2
d [ 1|3
e Which of the following is better
d =3 d=1 — lateness = 4
0 1 2 3 4 5 6 Time
d=1 d =3 — lateness = 2

]
T

0 1 2 3 4 5 6 [lime
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Scheduling to Minimise Lateness: Example

+——time required

6 8 9 9 14 15 <—— deadline
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Scheduling to Minimise Lateness: Example
.....n <— JOb number

2 4——time required

6 3 9 9 14 15 <—— deadline

e What's the delay for the following scheduling?

lateness = 2 lateness = 0 lateness = 6

24



Scheduling to Minimise Lateness: Problem

e Input: Set (t(i),d(/)),1 < i < n of length and deadline of n tasks.

e Solution: Set (s(f),

1 </ < n of start times such that
maxi<j<n(max(0,s(i) + t(i) — d(i))) is as small as possible

25



Minimizing Lateness: Brute Force Approach

e Generate all possible permutations of jobs.
e Calculate the maximum lateness for each permutation.

e Choose the permutation with the smallest maximum lateness.

26



Minimizing Lateness: Brute Force Algorithm

Algorithm 5 Minimize Lateness using Brute Force
function bruteForceMinimizeLateness(jobs):
n = len(jobs)
bestSchedule = None
minLateness = oo

foreach permutation in permutations(jobs):
currentTime, maxLateness = 0
for job in permutation:
currentTime += duration(job)
lateness = max(0, currentTime - deadline(job))
maxLateness = max(maxLateness, lateness)
if maxLateness < minLateness:
minLateness = maxLateness
bestSchedule = permutation
return bestSchedule

27



Minimizing Lateness: Brute Force Algorithm Time Complexity

Generating Permutations:

e There are n! (factorial) permutations of n jobs.

Evaluating Each Permutation:
e For each permutation, compute the maximum lateness by iterating
over n jobs.
e Each evaluation takes O(n) time.

Overall Time Complexity:
e Generating permutations: O(n!)
e Evaluating each permutation: O(n)
e Combined time complexity: O(n - n!)

The brute force algorithm is computationally expensive and
impractical for large input sizes due to the factorial growth rate.

28



Scheduling to Minimise Lateness: Sort the jobs

e Key question: In what order should we schedule the jobs?
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e Shortest length Increasing order of length t(/).
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Scheduling to Minimise Lateness: Sort the jobs

e Key question: In what order should we schedule the jobs?
e Shortest length Increasing order of length t(/).

e Shortest job may have a very late deadline.

1

2

t(i)

1

10

d(i)

100

10
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Scheduling to Minimise Lateness: Sort the jobs

e Key question: In what order should we schedule the jobs?
e Shortest length Increasing order of length t(/).

e Shortest job may have a very late deadline.

i 1 2
t() | 1 | 10
d(i) | 100 | 10

e Shortest slack time Increasing order of d(i) — t(i).
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i 1 2
t() | 1 | 10
d(i) | 100 | 10

e Shortest slack time Increasing order of d(i) — t(i).

e Job with smallest slack may take a long time.

i 1 2
t() | 1| 10
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e Earliest deadline Increasing order of deadline d(i).
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Scheduling to Minimise Lateness: Sort the jobs

e Key question: In what order should we schedule the jobs?

e Shortest length Increasing order of length t(/).

e Shortest job may have a very late deadline.

i 1 2
t() | 1 | 10
d(i) | 100 | 10

e Shortest slack time Increasing order of d(i) — t(i).

e Job with smallest slack may take a long time.

i 1 2
t() | 1| 10
d(iy | 2 | 10

e Earliest deadline Increasing order of deadline d(i).

e Does it make sense to tackle jobs with earliest deadlines first?

29



Minimizing Lateness: Earliest Deadline First

Algorithm 6 Minimize Lateness using Earliest Deadline First (EDF)
function minimizelLateness(jobs):
A=
sort(jobs) // Sort jobs based on deadline
currentTime = 0

lateness = 0
for job in jobs:
A.append(job)
currentTime += job.duration
if lateness j currentTime - job.duration:
lateness = currentTime - job.duration
return A, lateness

30



Proof of correctness

e We can use loop invariant
e Once sorted, executing the tasks in order requires O(n) time.

e Therefore, the overall runtime of the EDF algorithm is dominated by
the sorting step, making it O(nlog n).

31



Runtime Analysis

e Sorting the tasks by their deadlines takes O(nlog n) time.
e Once sorted, executing the tasks in order requires O(n) time.

e Therefore, the overall runtime of the EDF algorithm is dominated by
the sorting step, making it O(nlog n).

32



Fractional Knapsack




Fractional Knapsack Problem

Image Credit: https://www.hackerearth.com/practice/notes/the-knapsack-problem/

e Input: Knapsack capacity, items with their quantities and values.
e Goal: Maximize value without exceeding capacity.
e Constraints:

e |tems can be taken in fractions to obtain proportional value.

33


https://www.hackerearth.com/practice/notes/the-knapsack-problem/

Fractional Knapsack Problem

Image Credit: https://www.hackerearth.com/practice/notes/the-knapsack-problem/

Which of these items should | take to maximize value?

33


https://www.hackerearth.com/practice/notes/the-knapsack-problem/

Fractional Knapsack Problem

e Input: List (w(i),v(i)),1 <i < n,andC where C is the size of our
knapsack, w(i) is the size of item i and v(i) is its value

e Qutput: The maximum value we can get without exceeding C
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Fractional Knapsack: Greedy Property

e What should consider to be the greedy property
e When deciding to take an item or not
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Fractional Knapsack: Greedy Property

e What should consider to be the greedy property
e When deciding to take an item or not

e Take the item with the smallest size
e Take the item with the maximum value

e What if the item with the maximum value is more than the remaining
space in our knapsack?
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Fractional Knapsack: Greedy Property

e What should consider to be the greedy property
e When deciding to take an item or not

e Take the item with the smallest size
e Take the item with the maximum value

e What if the item with the maximum value is more than the remaining
space in our knapsack?

e How to sort the items
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Fractional Knapsack: Greedy Property

e What should consider to be the greedy property
e When deciding to take an item or not

e Take the item with the smallest size
e Take the item with the maximum value
e What if the item with the maximum value is more than the remaining
space in our knapsack?
e How to sort the items
e By size
e By value
e By value per unit of size
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Fractional Knapsack Algorithm: Pseudocode

Algorithm 7 Fractional Knapsack
Require: ltems with weights w; and values v;, knapsack capacity W

Ensure: Maximum total value in the knapsack
1: Calculate the value-to-weight ratio r; = = for each item /

2: Sort items by r; in descending order
3: Initialize total value V <0

4: Initialize remaining capacity C + W
5. for each item i in sorted order do

6: if w; < C then

7 Take the whole item i

8: C+—C—w

9: V—V+y

10: else

11: Take fraction % of item /

12: VV+4y x %/

13: Break the loop

14:  end if 36



Fractional Knapsack: Proof of Correctness

e Loop Invariant: At the start of each iteration i of the loop, the
total value V' and the remaining capacity C represent an optimal
solution for the subset of items considered so far.

e Initialization:

Before the first iteration, no items have been considered.

Total value V is initialized to 0.

Remaining capacity C is initialized to the knapsack capacity W.
The loop invariant holds trivially since no items have been added vyet.
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Fractional Knapsack: Proof of Correctness

e Maintenance:
e Assume the loop invariant holds before the i* iteration.
e Consider item i with weight w; and value v;.
e If w; < C, the entire item is added to the knapsack.
e The value v; is added to V/, and w; is subtracted from C.
e If w; > C, a fraction W£ of the item is added.
e The value v; x W£ is added to V, and C becomes 0.
e In both cases, thé updated V and C represent an optimal solution
for the considered items.
e The loop invariant is maintained.
e Termination:
e The loop terminates when all items have been considered or the
knapsack is full.
e At this point, the total value V and the remaining capacity C
represent an optimal solution.
e The loop invariant guarantees that the solution is optimal.
e Therefore, the fractional knapsack algorithm correctly computes the

maximum value.
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Fractional Knapsack: Time Complexity Analysis

The time complexity of the fractional knapsack algorithm is

determined by the sorting step and the loop.

e Sorting:
e The items are sorted by their value-to-weight ratio r; in descending
order.
e This step takes O(nlog n) time, where n is the number of items.
e Loop:
e The loop iterates over each item, processing it in constant time O(1).
e Therefore, the loop takes O(n) time.
e Overall Time Complexity:

e The total time complexity of the algorithm is dominated by the
sorting step.
e Thus, the overall time complexity is O(nlog n).
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Graph Recap




Definitions - Graphs

e Graph: A collection of nodes vertices (V) and edges (E) connecting
pairs of nodes.

e Directed vs Undirected

e Directed Graph: Edges have a direction, represented as ordered
pairs (u, v) indicating the path from vertex u to vertex v.

e Undirected Graph: Edges do not have a direction, represented as
unordered pairs {u, v}, allowing movement between vertices u and v
in both directions.

e Subgraph: A graph formed from a subset of the vertices and edges
of another graph.

e Degree of a Vertex: The number of edges incident to the vertex.
For a directed graph, there are in-degree and out-degree.
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Definitions - Types of Graphs

e Weighted Graph: A graph where each edge (v, v) has a numerical
value (weight) w(u, v) associated with it.

e Multi Graph: A graph that can have multiple edges (parallel edges)
between two vertices u and v.

e Complete Graph: A graph where every pair of distinct vertices u
and v is connected by a unique edge.

e Bipartite Graph: A graph whose vertices can be divided into two
disjoint and independent sets U and V such that every edge
connects a vertex in U to one in V.
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Definitions - Paths

e Path: A sequence of edges connecting a sequence of vertices.
e Simple Path: A path that does not repeat any vertices.

e Weight of Path: The sum of the weights of the edges in a path.
For a path P = {v, v, ..., v}, the weight
w(P) = Y15 w(vi, viga).

e Shortest Path: The path between two vertices that has the

smallest total weight or length.

e Distance: The length or weight of the shortest path between two
vertices u and v, denoted as d(u, v).

e Connected Graph: A graph in which there is a path between every
pair of vertices.
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Definitions - Trees

e Cycle: A path that starts and ends at the same vertex without
repeating any edges or vertices (except the starting/ending vertex).
e Tree: A connected acyclic graph.

e Spanning Tree: A subset of the edges of a graph that forms a tree
and connects all vertices of the graph.

e A tree connecting all the vertices in a graph.

e Minimum Spanning Tree: A spanning tree with the minimum
total weight of edges.
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Greedy Algorithm

e A greedy algorithm is an algorithmic paradigm that builds up a
solution piece by piece

e |t always chooses the next piece that offers the most immediate
benefit

e Properties of Greedy Algorithms:
e Greedy Choice Property:

e A global optimum can be arrived at by selecting a local optimum.
e This means making a choice that looks best at the moment.
e Optimal Substructure:

e A problem exhibits optimal substructure if an optimal solution to the
problem contains optimal solutions to the subproblems.
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Single Source Shortest Path




Shortest Path: The problem

e Find the shortest path from a single source vertex to another vertex
in a graph.
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Shortest Path: The problem

e Find the shortest path from a single source vertex to another vertex
in a graph.
e E.g., Starting from H what is the shortest path to F
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Shortest Path: The problem

e Find the shortest path from a single source vertex to another vertex
in a graph.
e E.g., Starting from H what is the shortest path to F
e Find the shortest path from a single source vertex to all other
vertices in a graph.
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Shortest Path: The Problem

e Real-World Examples:
e Finding the quickest route between two locations using a GPS.
e Optimizing data packet routing in a computer network.
e Planning the shortest path for a delivery route.

e Properties:
e Non-Negative Weights: Many shortest path algorithms assume
non-negative edge weights.
e Optimal Substructure: Shortest paths exhibit optimal substructure,
meaning the shortest path between two vertices contains within it
the shortest path between intermediate vertices.
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Shortest Path: Brute Force Approaches

e Exhaustive Search:
e Generate all simple paths between two vertices.
e Calculate the path weight for each path.
e Pick the one with the lowest weight (shortest path).
e Time Complexity:
e Brute force methods have exponential time complexity, typically
O(n!) for a graph with n vertices.
e This makes brute force methods impractical for large graphs.

e Consider a simple graph:
e Paths from A to D:
e A — D: Weight =7
e A — C — D: Weight = ?
e A—- B — C— D: Weight =7
e A— B — D: Weight =7




Shortest Path: Brute Force Approaches

e Exhaustive Search:
e Generate all simple paths between two vertices.
e Calculate the path weight for each path.
e Pick the one with the lowest weight (shortest path).
e Time Complexity:
e Brute force methods have exponential time complexity, typically
O(n!) for a graph with n vertices.
e This makes brute force methods impractical for large graphs.
e Consider a simple graph:
e Paths from A to D:
e A — D: Weight =7
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Shortest Path: Brute Force Approaches

e Exhaustive Search:
e Generate all simple paths between two vertices.
e Calculate the path weight for each path.
e Pick the one with the lowest weight (shortest path).
e Time Complexity:
e Brute force methods have exponential time complexity, typically
O(n!) for a graph with n vertices.
e This makes brute force methods impractical for large graphs.
e Consider a simple graph:
e Paths from A to D:
e A — D: Weight =7
e A— C— D: Weight =6
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Shortest Path: Brute Force Approaches

e Exhaustive Search:
e Generate all simple paths between two vertices.
e Calculate the path weight for each path.
e Pick the one with the lowest weight (shortest path).

e Time Complexity:
e Brute force methods have exponential time complexity, typically
O(n!) for a graph with n vertices.
e This makes brute force methods impractical for large graphs.

e Consider a simple graph: e 2 3 e
e Paths from A to D:
e A — D: Weight =7
e A— C — D: Weight =6
e A—B — C— D: Weight =7

2 3
60—0
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Shortest Path: Brute Force Approaches

e Exhaustive Search:

e Generate all simple paths between two vertices.
e Calculate the path weight for each path.
e Pick the one with the lowest weight (shortest path).

e Time Complexity:
e Brute force methods have exponential time complexity, typically
O(n!) for a graph with n vertices.
e This makes brute force methods impractical for large graphs.

e Consider a simple graph:

e Paths from A to D: eée

A — D: Weight =7

A — C — D: Weight = 6

A — B — C — D: Weight =7
A — B — D: Weight =5

2 1 3

0
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Shortest Path: Brute Force Approaches

e Exhaustive Search:
e Generate all simple paths between two vertices.
e Calculate the path weight for each path.
e Pick the one with the lowest weight (shortest path).
e Time Complexity:
e Brute force methods have exponential time complexity, typically
O(n!) for a graph with n vertices.
e This makes brute force methods impractical for large graphs.
e Consider a simple graph:
e Paths from A to D:

e A — D: Weight =7 eée
e A — C — D: Weight =6

e A— B — C— D: Weight =7

e A= B — D: Weight = 5 2 ! 3

e Shortest path is A — B — D with weight 5.
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General Structure of Shortest Path Algorithms

e Initialization:
e Set the initial distances from the source to all vertices as infinity,
except for the source itself, which is set to 0.
e Initialize the predecessor (or parent) for each vertex as undefined.

e Relaxation:
e For each edge (u, v), if the distance to v through u is shorter than
the current known distance to v, update the distance to v.
e Repeat this process iteratively, ensuring that the shortest known
distances are updated.
e This step ensures that the shortest path estimates improve
progressively.
e Finalization:
e Once all vertices are processed, the shortest path from the source to
each vertex is determined.
e The final distances represent the shortest paths from the source to
all other vertices.
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Dijkstra Algorithm: Intuition

e At each step choose the edge (u, v) with the lowest weight
e This happens on the relaxation step

e This is a greedy choice as it is only making decision based on the
currently observable distance

e By always choosing the vertex with the smallest known distance,
Dijkstra’s algorithm efficiently finds the shortest path.

e Only works for graphs with non-negative weights.
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Dijkstra Algorithm: Pseudo-code

Algorithm 8 Dijkstra’s Algorithm
1: Input: Graph G = (V, E), source vertex s

Output: Shortest paths from s to all other vertices
Initialize distances d[v] < oo for all v € V except d[s] < 0
Initialize an empty priority queue @
Insert s into @ with priority 0
while @ is not empty do
Extract vertex u with the smallest distance d[u] from Q@
for each neighbor v of u do
if d[u] + w(u,v) < d[v] then
10: dlv] < d[u] + w(u,v)
11: Insert v into @ with priority d[v]
12: end if
13:  end for
14: end while

© o N o g kW
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Dijkstra Algorithm: Example

e Visit the unvisited vertex with he smallest known distance from the
start vertex.

Distance | Parent

ITIommolow>» <L
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Dijkstra Algorithm: Example

e Visit the unvisited vertex with he smallest known distance from the
start vertex.

e Start with the source vertex and set the distance to 0

V | Distance | Parent
A 0 -

B e

C 00

D 0

E 0

F o0

G 00

H 0

Visited = [ ] Unvisited = [ A, B, C, D, E, F, G, H]
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Dijkstra Algorithm: Example

e Visit the unvisited vertex with he smallest known distance from the
start vertex.
e For the current vertex calculate the distance for all its unvisited
neighbours from the source and update the known distance if the

new distance is shorter

0+3

V | Distance | Parent
A 0 -

B 3 A

C 4 A

D 00

E 0

F 0

G 00

H 0

Visited = | ] Unvisited = [ A, B, C, D, E, F, G, H]
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Dijkstra Algorithm: Example

e Visit the unvisited vertex with he smallest known distance from the
start vertex.
e For the current vertex calculate the distance for all its unvisited
neighbours from the source and update the known distance if the

new distance is shorter

Distance | Parent

T ommololw> <

Visited = [ A ] Unvisited =[ B, C, D, E, F, G, H]
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Dijkstra Algorithm: Example

e Visit the unvisited vertex with he smallest known distance from the
start vertex.
e For the current vertex calculate the distance for all its unvisited
neighbours from the source and update the known distance if the

new distance is shorter

0—0

Distance | Parent

T ommololw> <

Visited = [ A ] Unvisited =[ B, C, D, E, F, G, H]
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Dijkstra Algorithm: Example

e Visit the unvisited vertex with he smallest known distance from the
start vertex.
e For the current vertex calculate the distance for all its unvisited
neighbours from the source and update the known distance if the

new distance is shorter

o—0

Distance | Parent

W > >

T ommololw> <

8888@-|>w0

Visited = [ A ] Unvisited =[ B, C, D, E, F, G, H]
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Dijkstra Algorithm: Example

e Visit the unvisited vertex with he smallest known distance from the
start vertex.
e For the current vertex calculate the distance for all its unvisited
neighbours from the source and update the known distance if the

new distance is shorter

0—0

Distance | Parent

W > >

T ommololw> <

8888@-|>w0

Visited = [A, B ] Unvisited =[ C, D, E, F, G, H]
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Dijkstra Algorithm: Example

e Visit the unvisited vertex with he smallest known distance from the
start vertex.
e For the current vertex calculate the distance for all its unvisited
neighbours from the source and update the known distance if the

new distance is shorter

Distance | Parent

W > >

T ommololw> <

8888@-|>w0

Visited = [A, B ] Unvisited =[ C, D, E, F, G, H]
51



Dijkstra Algorithm: Example

e Visit the unvisited vertex with he smallest known distance from the
start vertex.
e For the current vertex calculate the distance for all its unvisited
neighbours from the source and update the known distance if the
new distance is shorter

QLG V | Distance | Parent

A 0 -
B 3 A
C 4 A
D 6 B
E 6 C
F 00

G 00

H 6 C

Visited = [A, B ] Unvisited =[ C, D, E, F, G, H]
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Dijkstra Algorithm: Example

e Visit the unvisited vertex with he smallest known distance from the
start vertex.

e For the current vertex calculate the distance for all its unvisited

neighbours from the source and update the known distance if the
new distance is shorter

V | Distance | Parent
A 0 -

B 3 A

C 4 A

D 6 B

E 6 C

F 00

G 00

H 6 C

Visited = [A, B, C ] Unvisited=[ D, E, F, G, H]
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Dijkstra Algorithm: Example

e Visit the unvisited vertex with he smallest known distance from the
start vertex.
e For the current vertex calculate the distance for all its unvisited
neighbours from the source and update the known distance if the
new distance is shorter

QLG V | Distance | Parent
A 0 -
4 1 3 B 3 A
C 4 A
2 [ ] Q L D 6 B
E 6 C
F 00
G 00
H 6 C

Visited = [A, B, C ] Unvisited=[ D, E, F, G, H]
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Dijkstra Algorithm: Example

e Visit the unvisited vertex with he smallest known distance from the
start vertex.
e For the current vertex calculate the distance for all its unvisited

neighbours from the source and update the known distance if the
new distance is shorter

QLG V | Distance | Parent

A 0 -

4 1 3 B 3 A

C 4 A

* @ ©..0 [o = |-

6+ 1 E 6 C

7 2 5/ 6+5 1 F 7 D
G %)

G = H 6 C

Visited = [A, B, C ] Unvisited=[ D, E, F, G, H]
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Dijkstra Algorithm: Example

e Visit the unvisited vertex with he smallest known distance from the
start vertex.
e For the current vertex calculate the distance for all its unvisited
neighbours from the source and update the known distance if the
new distance is shorter

3
a e Distance | Parent

\%
A 0 -
4 1 3 B 3 A
2 1 C 4 A
e Q D 6 B
E 6 C
F 7 D
G 00
H 6 C

Visited =[A,B,C,D ] Unvisited = | E, F, G, H] 51



Dijkstra Algorithm: Example

e Visit the unvisited vertex with he smallest known distance from the

start vertex.

e For the current vertex calculate the distance for all its unvisited
neighbours from the source and update the known distance if the

new distance is shorter

QLG V | Distance | Parent
A 0 -
4 1 3 B 3 A
C 4 A
2 [ ] Q L D 6 B
E 6 C
7 2 F 7 D
G 00
G H 6 C

Visited = [A, B, C,D ]Unvisited=[ E F, G, H]
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Dijkstra Algorithm: Example

e Visit the unvisited vertex with he smallest known distance from the
start vertex.
e For the current vertex calculate the distance for all its unvisited
neighbours from the source and update the known distance if the
new distance is shorter

QLG V | Distance | Parent
A 0 -
4 1 3 B 3 A
5 1 C 4 A
O—06 O o[ 6 | B
6 E 6 C
X 52 5 1 F 7 D
G 10 E
GL@ H 6 C
6+ 4

Visited = [A, B, C,D ]Unvisited=[ E F, G, H]
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Dijkstra Algorithm: Example

e Visit the unvisited vertex with he smallest known distance from the
start vertex.
e For the current vertex calculate the distance for all its unvisited
neighbours from the source and update the known distance if the
new distance is shorter

QLG V | Distance | Parent
A 0 -
4 1 3 B 3 A
C 4 A
2 [ ] Q L D 6 B
E 6 C
7 3 F 7 D
G 10 E
G H 6 C

Visited = [A, B, C,D,E ]Unvisted=[ F, G, H]
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Dijkstra Algorithm: Example

e Visit the unvisited vertex with he smallest known distance from the
start vertex.
e For the current vertex calculate the distance for all its unvisited
neighbours from the source and update the known distance if the
new distance is shorter

QLG V | Distance | Parent

A 0 -

4 1 3 B 3 A

C 4 A

06 O (® [ -
E 6 C

7 3 F 7 D
G 10 E

G H 6 C

Visited = [A, B, C,D,E ]Unvisted=[ F, G, H]
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Dijkstra Algorithm: Example

e Visit the unvisited vertex with he smallest known distance from the
start vertex.
e For the current vertex calculate the distance for all its unvisited
neighbours from the source and update the known distance if the
new distance is shorter

QLG V | Distance | Parent
A 0 -
4 1 3 B 3 A
C 4 A
006 O ([ =
E 6 C
7 3 F 7 D
G 10 E
G H 6 C
Visited =[A,B,C,D,E,H ] Unvisited = | F, G, ]
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Dijkstra Algorithm: Example

e Visit the unvisited vertex with he smallest known distance from the

start vertex.

e For the current vertex calculate the distance for all its unvisited
neighbours from the source and update the known distance if the

new distance is shorter
0—0

4 1 3

0O—06 00

7 2 5

60—

Visited =[A,B,C,D,E, H

Distance

Parent

1

T ommololw> <

AmM OO > >

] Unvisited = [
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Dijkstra Algorithm: Example

e Visit the unvisited vertex with he smallest known distance from the

start vertex.

e For the current vertex calculate the distance for all its unvisited
neighbours from the source and update the known distance if the

new distance is shorter

0—0

Visited = [A, B, C,D,E,H ]Unvisited = [

V | Distance | Parent
A 0 -
B 3 A
C 4 A
D 6 B
E 6 C
F 7 D
G 8 F
H 6 C
F, G, ]
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Dijkstra Algorithm: Example

e Visit the unvisited vertex with he smallest known distance from the

start vertex.

e For the current vertex calculate the distance for all its unvisited

neighbours from the source and update the known distance if the

new distance is shorter

QLG V | Distance | Parent
A 0 -
4 1 |3 B 3 2
C 4 A
0 2 e Q;G D 6 B
E 6 C
N 2| 5 1 F g b
G 8 F
G 4 H 6 C
Visited =[A,B,C,D,E,H,F ] Unvisited = | G, ]
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Dijkstra Algorithm: Example

e Visit the unvisited vertex with he smallest known distance from the

start vertex.

e For the current vertex calculate the distance for all its unvisited

neighbours from the source and update the known distance if the

new distance is shorter

0—0

4 1 3

0—O0

”//

Visited = [A, B, C,D,E,H,F ] Unvisited = |

V | Distance | Parent
A 0 -

B 3 A

C 4 A

D 6 B

E 6 C

F 7 D

G 8 F

H 6 C

G ]
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Dijkstra Algorithm: Example

e Visit the unvisited vertex with he smallest known distance from the
start vertex.
e For the current vertex calculate the distance for all its unvisited

neighbours from the source and update the known distance if the
new distance is shorter

Q;e V | Distance | Parent
A 0 -
4 1 3 B 3 A
C 4 A
m# D 6 B
E 6 C
7 3 F 7 D
G 8 F
H 6 C
Visited =[A,B,C,D,E,H,F,G] Unvisited = | ]
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Dijkstra Algorithm: Proof of Correctness

e Assume that Dijkstra's algorithm does not always produce the
shortest path.

e Let u be the first vertex for which the algorithm finds an incorrect
shortest path.

e Assume the true shortest path to v is through a vertex v, but the
algorithm incorrectly determines a different path.

e Since u is the first vertex with an incorrect path, d[v] must be
correct when u is processed.

e When u is selected for processing, all vertices with shorter paths
(including v) should have already been processed.

e However, since v was not processed before u, d[v] must be greater
than d[u], contradicting the assumption that the path through v is
shorter.

e Hence, the assumption that Dijkstra’s algorithm does not always
produce the shortest path is false.

e Therefore, Dijkstra’s algorithm correctly finds the shortest path.
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Dijkstra Algorithm: Proof of Correctness
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Dijkstra Algorithm: Proof of Correctness
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Dijkstra Algorithm: Time Complexity

e Dijkstra’s algorithm uses a priority queue for efficient distance
updates.
e The main operations are:

e Insertion into the priority queue.
e Extracting the minimum element from the priority queue.
e Decreasing the key value in the priority queue.

e Insertion and decrease-key operations take O(log V) time.

e Extract-min operation takes O(log V) time.

e Total time complexity with a binary heap is O((V + E)log V).
e For a complete graph, where E = O(V?):

e With a binary heap, the time complexity is O(V?log V).
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Dijkstra’s Algorithm: Real-World Applications

e Used to find the shortest path between two locations, providing
efficient routing for vehicles and pedestrians.

e Used in protocols like OSPF (Open Shortest Path First) to determine
the most efficient path for data packets to travel across a network.

e Helps in planning and managing traffic flow by identifying the
shortest routes and reducing congestion.

e Applied in optimizing delivery routes for logistics companies to
ensure timely and cost-effective deliveries.

e Used in Al pathfinding to navigate characters or objects through
complex environments in video games.
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Shortest Path Problem: Extensions

e Multi-Source Shortest Paths:
e Floyd-Warshall Algorithm: Solves for all pairs shortest paths in
O(V?) time.
e Negative Weights:

e Bellman-Ford Algorithm: Handles negative weights, runs in O(VE)
time.

o Negative Weight Cycles:

e Detects negative weight cycles, which can lead to undefined shortest
paths.
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Minimum Spanning Tree




MST: The Problem

e Find the subset of edges that connects all the vertices with the
minimum total weight.
e E.g., Given a weighted graph, find the minimum spanning tree that
connects all nodes.
e The resulting tree should have the minimum possible total edge
weight.
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MST: Applications

Network Design:

e Used to design efficient networks (computer, telecommunication,
etc.) with minimal wiring/cabling costs.

Urban Planning;:

e Helps in designing road networks to connect cities with minimum
total road length.

Clustering Analysis:

e Applied in hierarchical clustering methods to determine clusters in
data.

e Circuit Design:

e Used to minimize the total length of wires in circuit design.
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Spanning Tree: Properties

e Given a graph G = (V,E)
e A spanning tree of the graph will be a graph with |V/| vertices and
|V]| — 1 edges
e The number of possible spanning trees is |[E|C(|V/|— 1) — |C|, where
C is the number of cycles in the graph

G o e G Example Spanning Trees
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Spanning Tree: Properties

e Given a graph G = (V,E)
e A spanning tree of the graph will be a graph with |V/| vertices and
|V]| — 1 edges
e The number of possible spanning trees is |[E|C(|V/|— 1) — |C|, where
C is the number of cycles in the graph

(W—®)
Example Spanning Trees
(Hy—(c) (0)—F) «(aB).(B O, (CH)CE),
(E. D), (E, G), (G F)
(E—¢)
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Spanning Tree: Properties

e Given a graph G = (V,E)
e A spanning tree of the graph will be a graph with |V/| vertices and
|V]| — 1 edges
e The number of possible spanning trees is |[E|C(|V/|— 1) — |C|, where
C is the number of cycles in the graph

e e Example Spanning Trees
e (A, B), (B, Q) (C, H), (C, E),

)
(M (©O—F) EDLESGH
‘ « (A.C), (C. B). (8,D), (C. ©),
(E, H), (E, G), (D, F)
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MST: Example

e Example: Consider the given graph and following spanning trees.
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MST: Example

e Example: Consider the given graph and following spanning trees.

e (A,B)+ (B, C)+ (C, E)+ (D, F) + (E, G) + (C, H) + (F, G)
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MST: Example

e Example: Consider the given graph and following spanning trees.
e (A,B)+ (B,C)+ (C, E)+ (D, F) + (E, G) + (C, H) + (F, G)
o Weight ST:3+1+24+1+44+2+8=21

60



MST: Example

e Example: Consider the given graph and following spanning trees.
e (A,B)+ (B, C)+(C, E)+ (D, F)+ (E G) + (C, H)+ (F, G)
o Weight ST:34+1+4+2+4+1+44+2+8=21

e What is the Weight of the MST: @D
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MST: Example

e Example: Consider the given graph and following spanning trees.
e (A,B)+ (B, C)+(C, E)+ (D, F)+ (E G) + (C, H)+ (F, G)
o Weight ST:34+1+4+2+4+1+44+2+8=21

e What is the Weight of the MST: 16
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Kruskal’s Algorithm: Idea

e Greedy Choice Property:
e At each step, the algorithm makes a locally optimal choice by
selecting the smallest weight edge available.
e This greedy choice leads to a globally optimal solution for the MST.
e Optimal Substructure:
e Any subset of edges that forms an MST for a subgraph of the
original graph is part of the MST for the entire graph.
e This property allows the algorithm to build the MST incrementally.
e Kruskal's Algorithm constructs the MST by adding edges in
increasing order of weight.
e At each step, the edge added does not form a cycle with the
previously added edges.
e Uses a Disjoint Set data structure (Union-Find) to efficiently
manage the connected components.
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Union-Find Data Structure

e A data structure that keeps track of a set of elements partitioned
into disjoint (non-overlapping) subsets.

e Provides efficient operations to manage and merge these subsets.

e Key Operations:

e Find: Determine the subset (or set representative) of an element.
e Union: Merge two subsets into a single subset.

e Before adding an edge, use the Find operation to check if the two
vertices are in the same subset.

e If they are in the same subset, adding the edge would form a cycle.

e If they are in different subsets, use the Union operation to merge the
subsets, safely adding the edge without forming a cycle.
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Kruskal’s Algorithm: Pseudo-code

Algorithm 9 Kruskal's Algorithm
1: Input: Graph G = (V,E)
Output: Minimum Spanning Tree T

Sort edges E by weight
Initialize T =0
for each edge (u,v) in E (in increasing order of weight) do
if adding (u,v) to T does not form a cycle then
Add (u,v) to T
end if
end for
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return T
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Kruskal’s Algorithm: Example

e Start with an empty MST.

e Add the smallest edge that does not form a cycle.
e Continue until the MST contains |V/| — 1 edges.

e Edges added to MST:
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Kruskal’s Algorithm: Example

e Start with an empty MST.

e Add the smallest edge that does not form a cycle.
e Continue until the MST contains |V/| — 1 edges.

e Edges added to MST:
e (B,C)=1
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Kruskal’s Algorithm: Example

e Start with an empty MST.

e Add the smallest edge that does not form a cycle.
e Continue until the MST contains |V/| — 1 edges.

e Edges added to MST:
e (B,C)=1
e (D,F)=1
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e Start with an empty MST.
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e Continue until the MST contains |V/| — 1 edges.

e Edges added to MST:

e (B,C)=1
e (D,F)=1
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Kruskal’s Algorithm: Example

e Start with an empty MST.

e Add the smallest edge that does not form a cycle.
e Continue until the MST contains |V/| — 1 edges.

e Edges added to MST:

e (B,O)=1
e (D,F)=1
e (CCE)=2
e (CCH)=2
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Kruskal’s Algorithm: Example

e Start with an empty MST.
e Add the smallest edge that does not form a cycle.
e Continue until the MST contains |V/| — 1 edges.

e Edges added to MST:
e (B,CO)=1
o (D,F)=1
e (CCE)=2
e (CCH)=2
e (B,D)=3
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Kruskal’s Algorithm: Example

e Start with an empty MST.

e Add the smallest edge that does not form a cycle.
e Continue until the MST contains |V/| — 1 edges.

e Edges added to MST:
e (B,C)=1
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Kruskal’s Algorithm: Example

e Start with an empty MST.

e Add the smallest edge that does not form a cycle.
e Continue until the MST contains |V/| — 1 edges.

e Edges added to MST:

e (B,C)=1
e (D,F)=1
e (CCE)=2
e (CCH)Y=2
e (B,D)=3
e (A,B)=3
e (E,G) =4
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Kruskal’s Algorithm: Example

e Start with an empty MST.
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e (CCH)Y=2
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Kruskal’s Algorithm: Example

e Start with an empty MST.

e Add the smallest edge that does not form a cycle.
e Continue until the MST contains |V| — 1 edges.

e Edges added to MST:
e (B,C)=1
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e MST: (B, C), (D, F), (C, E), (C, H), (B, D) (A, B), (E, G)
o Weight=14+14+2+24+3+3+4=16
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Kruskal’s Algorithm: Correctness

e Assume that Kruskal's Algorithm does not produce a Minimum
Spanning Tree (MST).

e Let T be the MST produced by Kruskal's Algorithm, and let T* be
the true MST.

e Assume that the total weight of T is greater than the total weight
of T*.
e Edge Addition:

e Kruskal's Algorithm adds edges in increasing order of weight.

e During the construction, if an edge e is added to T but not to T~,
replacing any edge in T* with e would result in a spanning tree with
equal or lesser weight.
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Kruskal’s Algorithm: Correctness

e Cycle Formation:
e The Union-Find data structure ensures that adding e does not form
a cycle.
e Therefore, every edge added maintains the acyclic property of T.
o Contradiction:
e Since T and T™ are both spanning trees and T is constructed by

adding edges in increasing order of weight, it cannot have a greater
total weight than T*.

e Hence, the assumption that Kruskal's Algorithm does not produce an
MST is false.
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Kruskal’s Algorithm: Time Complexity

e Sorting the edges takes O(E log E) time.
e Each Union and Find operation takes O(log V) time.

e Overall time complexity is O(E log E + E log V), which simplifies to
O(E log V) for connected graphs.
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Prim’s Algorithm: ldea

e Greedy Choice Property:

e At each step, the algorithm makes a locally optimal choice by
selecting the smallest weight edge that connects a vertex in the MST
to a vertex outside the MST.

e This greedy choice ensures that the MST grows incrementally by
always adding the minimum possible edge.

e Optimal Substructure:

e Any subset of edges that forms an MST for a subgraph of the
original graph is part of the MST for the entire graph.

e This property allows the algorithm to build the MST incrementally,
ensuring optimality at each step.

e Prim’s Algorithm constructs the MST by starting from an arbitrary
vertex and growing the MST one edge at a time.

e At each step, the algorithm selects the smallest weight edge that
connects a vertex in the MST to a vertex outside the MST.

e Uses a priority queue (often implemented with a binary heap or

Fibonacci heap) to efficiently select the next edge to add.
68



Prim’s Algorithm: Pseudocode

Algorithm 10 Prim’'s Algorithm
1: Input: Graph G = (V, E), starting vertex s
Output: Minimum Spanning Tree T
Initialize distances d[v] < oo for all v € V except d[s] < 0

Initialize an empty priority queue @
Insert s into @ with priority 0
while @ is not empty do
Extract vertex u with the smallest distance d[u] from Q@
for each neighbor v of u do
if v is not in the MST and w(u, v) < d[v] then
10: dv] + w(u,v)
11: Insert v into @ with priority d[v]
12: end if
13:  end for
14: end while
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Prim’s Algorithm: Example

e Start with an arbitrary vertex.

e Add the smallest edge that connects a vertex in the MST to a vertex
outside the MST.
e Continue until all vertices are included in the MST.

e Edges added to MST:
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Prim’s Algorithm: Example

e Start with an arbitrary vertex.

e Add the smallest edge that connects a vertex in the MST to a vertex
outside the MST.
e Continue until all vertices are included in the MST.
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e (B,C)=1
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e Start with an arbitrary vertex.

e Add the smallest edge that connects a vertex in the MST to a vertex
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e Continue until all vertices are included in the MST.

e Edges added to MST:
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e (CCE)=2
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Prim’s Algorithm: Example

e Start with an arbitrary vertex.

e Add the smallest edge that connects a vertex in the MST to a vertex
outside the MST.
e Continue until all vertices are included in the MST.

0—0

e Edges added to MST:
e (B,CO)=1
e (CCE)=2
e (CCH)=2
e (A,B)=3
e (B,D) =3

¢ MST: (B, C), (C, E), (C,H), (A, B), (B, D), (D, F), (E, G)
e Weight =14+2+2+3+3+1+4=16
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Prim’s Algorithm: Example

e Start with an arbitrary vertex.

e Add the smallest edge that connects a vertex in the MST to a vertex
outside the MST.
e Continue until all vertices are included in the MST.

3
e e e Edges added to MST:

4 1 |3 * (B.C)=
e (CCE)y=2
G 2 e (CLH)=2
e (A,B)=3
7 2 e (B,D)=3
e (D,F)=1
e (E,G) =4

o MST: (B, Q). (c, E), (C,H), (A, B), (B, D), (D, F), (E, G)
e Weight =14+2+2+3+3+1+4=16

70



Prim’s Algorithm: Correctness

e Assume that Prim’s Algorithm does not produce a Minimum
Spanning Tree (MST).

e Let T be the MST produced by Prim’s Algorithm, and let T* be the
true MST.

e Assume that the total weight of T is greater than the total weight
of T*.
e Edge Addition:

e Prim’s Algorithm adds edges in increasing order of their weight,
starting from an arbitrary vertex.

e At each step, it selects the smallest edge that connects a vertex in T
to a vertex outside T.

e If an edge e is added to T but not to T*, replacing any edge in T~
with e would result in a spanning tree with equal or lesser weight.
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Prim’s Algorithm: Correctness

e Cycle Avoidance:

e Prim’s Algorithm ensures that each added edge connects a vertex
inside the MST to one outside, maintaining the acyclic property of T.

e Since T starts with a single vertex and grows by adding one edge at
a time, no cycles can form.

e Contradiction:

e Since T and T* are both spanning trees and T is constructed by
adding edges in increasing order of weight, it cannot have a greater
total weight than T~.

e Hence, the assumption that Prim’s Algorithm does not produce an
MST is false.

e Conclusion:

e Prim’s Algorithm correctly produces an MST.
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Prim’s Algorithm: Time Complexity

e Using a binary heap, the time complexity is O((V + E) log V).
e Using a Fibonacci heap, the time complexity is O(E + V log V).

e For dense graphs, the time complexity is dominated by the number
of edges.
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Comparison of Kruskal’s and Prim’s Algorithms

e Kruskal’s Algorithm:

e Constructs the MST by adding edges in increasing order of weight.

e At each step, the edge added does not form a cycle with the
previously added edges.

e Uses a Disjoint Set data structure (Union-Find) to manage
connected components.

e Suitable for sparse graphs.

e Time Complexity: O(E log E) (or O(E log V) if implemented with
efficient union-find operations).
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Comparison of Kruskal’s and Prim’s Algorithms

e Prim’s Algorithm:

e Constructs the MST by starting from an arbitrary vertex and growing
the MST one edge at a time.

e At each step, selects the smallest weight edge that connects a vertex
in the MST to a vertex outside the MST.

e Uses a priority queue (binary heap or Fibonacci heap) for efficient
edge selection.

e Suitable for dense graphs.

e Time Complexity: O((V + E)log V) with a binary heap,
O(E + Vlog V) with a Fibonacci heap.
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Comparison of Kruskal’s and Prim’s Algorithms

e Similarities:
e Both algorithms use a greedy approach to construct the MST.
e Both algorithms ensure the MST has the minimum total weight.
e Both algorithms maintain the properties of acyclic and connectivity.

e Differences:
e Approach:

e Kruskal's: Edge-based, adds edges in increasing weight.
e Prim’s: Vertex-based, grows MST from a starting vertex.

e Data Structures:

e Kruskal's: Uses Union-Find for cycle detection.
e Prim’s: Uses a priority queue for selecting the next edge.

o Efficiency:
e Kruskal's: More efficient for sparse graphs.
e Prim’s: More efficient for dense graphs.
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Conclusion




Greedy Algorithms: Summary

e A greedy algorithm is an algorithmic paradigm that builds up a
solution piece by piece.

e Greedy algorithms are best suited for problems where:

The problem exhibits the greedy choice property.

The problem has optimal substructure.

A clear local optimum can be identified that leads to a global
optimum.

Example problems include finding the minimum spanning tree,
shortest paths in graphs, and constructing optimal codes.
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Today’s Session: Summary

e We discussed scheduling problems

e Interval Scheduling
e Interval Partitioning

e Minimizing Lateness
e Fractional knapsack

e We presented greedy algorithms to the problems

o \We showed these algorithms result in correct output
e We showed the greedy properties of each
e We showed the running time of these algorithms
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Today’s Session:Summary

e Greedy algorithms for graph

e Single Source shortest path with Dijkstra Algorithm
e Minimum Spanning Tree

e Kruskal's algorithm
e Prim’s algorithms

e Example applications of these problems/algorithms
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Resource

e Shortest Path Problem

e General Idea: https://www.youtube.com/watch?v=Aa2sqUhlIn-E
e Dijkstra’s Algorithm:

e https://www.youtube.com/watch?v=pV{j6mxhdMw
e https://www.youtube.com/watch?v=2E7MmKv0Y24
e https://www.youtube.com/watch?v=HXhJIDB6EcM

e MST:

e https://www.youtube.com/watch?v=YIdkh0aOEcg
e https://www.youtube.com/watch?v=tKwnms5iRBU

80



	Objective
	Interval Scheduling
	Interval Partitioning
	Minimizing Lateness
	Fractional Knapsack
	Graph Recap
	Graphs
	Greedy Algorithms

	Single Source Shortest Path
	Minimum Spanning Tree
	The Problem
	Kruskal's Algorithm
	Prim's Algorithm

	Conclusion

