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Motivation



Why Graphs

• Model pairwise relationships (edges) between objects (nodes).

• Useful in a large number of applications:

• Computer networks

• The World Wide Web

• Social Networks

• Software Systems

• Job scheduling

• Word Morphology, and more

• In CS, we use graph data structure when we want to model non

linear data structures
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Euler’s Problem

• Devise a walk through the city that crosses each of the bridges

exactly once.
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Definition



Definition: Undirected Graph

A B

C D

E

• Undirected graph G = (V ,E ): set V of nodes and set E of edges,

where E ⊂ V × V

• Elements of E are unordered pairs.

• Edge (u, v) is incident on u, v ; u and v are neighbours of each other.

• Exactly one edge between any pair of nodes.

• G contains no self loops, i.e., no edges of the form (u, u).
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Definition: Directed Graph

A B

C D

E

• Directed graph G = (V ,E ): set V of nodes and set E of edges,

where E ⊂ V × V

• Elements of E are ordered pairs.

• Edge (u, v): u is the tail of the edge e, v is its head; e is directed

from u to v.

• A pair of nodes may be connected by two directed edges: (u, v) and

(v, u).

• G contains no self loops, i.e., no edges of the form (u, u).
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Definition: Paths

• A v1 − vk path in an undirected graph G = (V, E) is a sequence P of

nodes v1, v2, ..., vk−1, vk ∈ V such that every consecutive pair of

nodes vi , vi+1, 1 ≤ i < k is connected by an edge in E .

• A path is simple if all its nodes are distinct.
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Definition: Paths

• A cycle is a path where k > 2, the first k − 1 nodes are distinct, and

v1 = vk .
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Definition: Connectivity

• An undirected graph G is connected if for every pair of nodes

u, v ∈ V , there is a path from u to v in G.

• Distance d(u, v) between two nodes u and v is the minimum

number of edges in any u − v path.

A B

C D

E

F

G

• Similar definitions carry over to directed graphs as well.
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Example: Connectivity

A B

C D

E

F

G

• Questions

• Is there a path between F and C: No

• What’s the distance between D and A : 2
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Example: Connectivity

A B

C D

E

F

G

H

I J

K

• The connected component of the graph containing E is the set of

all nodes u such that there is a path between E and u path in the

graph.

• Algorithm for the S-T Connectivity problem: compute the connected

component of G that contains S and check if T is in that component.
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Definition: Tree

A B

C D

E

F

G

H

I J

K

• A connected graph G is said to be a Tree if there are nos cycles in

the graph

• If two of the following are true the third is true.

• G is a Tree

• G is connected

• G does not have a cycle
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Traversal



BFS: Intuition

• Breadth-First Search (BFS) is an algorithm for traversing or

searching tree or graph data structures.

• It starts at the root (or an arbitrary node in the case of a graph) and

explores all neighbors at the present depth prior to moving on to

nodes at the next depth level.

• BFS uses a queue to keep track of the next node to explore, ensuring

all nodes at the current depth are visited before moving deeper.

• BFS is useful for:

• Finding the shortest path in unweighted graphs.

• Finding all nodes within one connected component.
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BFS: Example
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BFS: Example (Step 1)

A B

C D

E

F

G

H

I J

K

16



BFS: Example (Step 2)
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BFS: Example (Step 3)
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BFS: Example (Step 4)
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BFS: Example (Step 5)
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BFS: Example (Step 6)
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BFS: Example (Step 7)
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BFS: Example (Step 8)
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BFS: Algorithm

Algorithm 1 Breadth-First Search (BFS)

1: Input: Graph G = (V ,E ), starting node s

2: Output: Set of visited nodes

3:

4: function BFS(G , s):

5: let Q be a queue

6: initialize Q with s

7: mark s as visited

8: while Q is not empty do

9: v ← dequeue Q

10: for each neighbor w of v do

11: if w is not visited then

12: mark w as visited

13: enqueue w into Q

14: end if

15: end for

16: end while

17: end function
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BFS: Analysis

• Time Complexity: O(V + E )

• Each vertex is enqueued and dequeued at most once.

• Each edge is considered once when exploring the vertex at one end

of the edge.

• Therefore, the total work done is proportional to the sum of the

number of vertices and edges.

• Space Complexity: O(V )

• We need to store the visited status of each vertex, which requires

O(V ) space.

• The queue can grow to at most O(V ) size if all vertices are at the

same level.
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BFS: Use Cases

• Shortest path in unweighted graphs:

• BFS finds the shortest path (minimum number of edges) from the

source node to all other nodes.

• Useful in scenarios like finding the shortest route in a road network

where all roads have the same length.

• Finding connected components in a graph:

• BFS can be used to explore all nodes in a connected component

starting from any node in the component.

• Helps in identifying and counting isolated subgraphs within a larger

graph.

• Level-order traversal of a tree:

• In trees, BFS is used for level-order traversal, visiting nodes level by

level.

• Commonly used in scenarios like breadth-first search in AI and game

development.
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BFS: Use Cases

• Web crawling:

• BFS is used to crawl web pages starting from a given URL and

exploring all reachable pages within a certain depth.

• Ensures that all pages at the current depth are visited before moving

to deeper levels.

• Social network analysis:

• BFS can help in exploring social networks to find shortest

connections between individuals.

• Useful for analyzing degrees of separation and influence spread in

networks like Facebook or LinkedIn.
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DFS: Intuition

• Depth-First Search (DFS) is an algorithm for traversing or searching

tree or graph data structures.

• It starts at the root (or an arbitrary node in the case of a graph) and

explores as far as possible along each branch before backtracking.

• DFS uses a stack (or recursion) to keep track of the path being

explored.

• DFS is useful for:

• Pathfinding in mazes.

• Topological sorting.

• Detecting cycles in graphs.
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DFS: Example
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DFS: Example (Step 1)
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DFS: Example (Step 2)
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DFS: Example (Step 3)
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DFS: Example (Step 4)
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DFS: Example (Step 5)

A B

C D

E

F

G

H

I J

K

34



DFS: Example (Step 6)
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DFS: Example (Step 7)

A B

C D

E

F

G

H

I J

K

36



DFS: Example (Step 8)
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DFS: Example (Step 9)
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DFS: Example (Step 10)
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DFS: Example (Step 11)
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DFS: Example (Step 12)
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DFS: Algorithm

Algorithm 2 Depth-First Search (DFS)

1: Input: Graph G = (V ,E ), starting node s

2: Output: Set of visited nodes

3:

4: function DFS(G , s):

5: initialize an empty stack S

6: push s onto S

7: mark s as visited

8: while S is not empty do

9: v ← pop S

10: for each neighbor w of v do

11: if w is not visited then

12: mark w as visited

13: push w onto S

14: end if

15: end for

16: end while

17: end function
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DFS: Analysis

• Time Complexity: O(V + E )

• Each vertex is pushed and popped from the stack at most once.

• Each edge is explored once when visiting the vertex at one end of the

edge.

• Therefore, the total work done is proportional to the sum of the

number of vertices and edges.

• Space Complexity: O(V )

• We need to store the visited status of each vertex, which requires

O(V ) space.

• The stack can grow to at most O(V ) size in the worst case (when

the graph is a single path).
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DFS: Use Cases

• Pathfinding in mazes:

• DFS is useful for exploring all possible paths in a maze or labyrinth.

• It helps in finding a path from the start to the end by exploring

deeper into the maze.

• Topological sorting:

• DFS is used in topological sorting of directed acyclic graphs (DAGs).

• It helps in ordering tasks or vertices such that for every directed edge

uv , vertex u comes before v .

• Detecting cycles in graphs:

• DFS can detect cycles in both directed and undirected graphs.

• By keeping track of visited nodes and the recursion stack, DFS

identifies back edges that form cycles.

44



DFS: Use Cases

• Finding connected components:

• DFS is used to find all vertices in a connected component of an

undirected graph.

• Helps in identifying and counting isolated subgraphs within a larger

graph.

• Solving puzzles with only one solution:

• Puzzles like Sudoku can be solved using DFS by exploring possible

solutions depth-wise.

• Ensures all potential paths are explored until the correct solution is

found.
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BFS vs DFS

• Both visit the same set of nodes but in a different order.

• Both traverse all the edges in the connected component but in a

different order.

• BFS trees have root-to-leaf paths that look as short as possible

• Paths in DFS trees tend to be long and deep.
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Implementation



Implementation: Representing Graphs

• Graph G = (V ,E ) has two input parameters: |V | = n, |E | = m.

• Size of the graph is defined to be m + n.

• Strive for algorithms whose running time is linear in graph size, i.e.,

O(m + n).

• Adjacency matrix: n × n Boolean matrix, where the entry in row i

and column j is 1 if and only if the graph contains the edge (i , j).

• Adjacency list: array Adj, where Adj[v] stores a linked list of all

nodes adjacent to v.

• An edge e = (u, v) appears twice: in Adj [u] and Adj [v ].

Operation/Space Adj. matrix Adj. list

Is (i , j) an edge? O(1)time O(ni )

Iterate over all edges

incident on node i
O(n)time O(ni )

Space O(n2) O(n +m)
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Graph Representations: Example

A B

C D

E

Adjacency matrix representation

A B C D E

A 0 1 1 0 0

B 1 0 1 1 1

C 1 1 0 1 0

D 0 1 1 0 0

E 0 1 0 0 0

Adjacency list representation
V Neighbors

A B, C

B A, C, D, E

C A, B, D

D B, C

E B
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Graph Representations: Example 2

A B

C D

E
2

3
1

4

2

5

Adjacency matrix representation

A B C D E

A 0 2 3 0 0

B 2 0 1 4 2

C 3 1 0 5 0

D 0 4 5 0 0

E 0 2 0 0 0

Adjacency list representation
V Neighbors

A B (2), C (3)

B A (2), C (1), D (4), E (2)

C A (3), B (1), D (5)

D B (4), C (5)

E B (2)
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Implementation: Traversal

• ”Implementation” of BFS and DFS: fully specify the algorithms and

data structures so that we can obtain provably efficient times.

• Inner loop of both BFS and DFS: process the set of edges incident

on a given node and the set of visited nodes.

• How do we store the set of visited nodes? Order in which we process

the nodes is crucial.

• BFS: store visited nodes in a queue (first-in, first-out).

• DFS: store visited nodes in a stack (last-in, first-out)
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Conclusion



Summary

• We discussed the motivation behind graph data structures

• Problems that can be solved with graph modeling

• Definitions and properties

• Graph representations

• Graph traversal algorithms
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Next class

• Greedy Algorithms

• Both with linear and graphs data structures

• More graph examples

52



Acknowledgement

• Parts of the slides adopted from T. M. Murali @ VT

53


	Motivation
	Definition
	Traversal
	Breadth-First Search (BFS)
	Depth-First Search (DFS)

	Implementation
	Conclusion

