
Algorithm Analysis

CS 4104: Data and Algorithm Analysis

Yoseph Berhanu Alebachew

May 11, 2025

Virginia Tech

Table of contents

1. Algorithm Analysis

2. Correctness of An Algorithm

3. Rate of Growth

4. Summary

1

Algorithm Analysis

Algorithm Analysis: Definition

• Analysis of algorithms refers to the determination of the amount of

resources necessary to execute them.

• Resource include things like time and storage

• Most algorithms are designed to work with inputs of arbitrary length

• Efficiency or running time of an algorithm is stated as a function of

input size

• The function relates input size to the amount of resource consumed

during execution

• The unit of resource might be

• Number of steps for time complexity

• Storage locations for space complexity

• Number of bytes transferred for bandwidth complexity

2

Algorithm Analysis: Dimensions of Analysis

• We are often concerned about computational time as resource

requirement

• Sometime we are also concerned about memory, communication

bandwidth, and other costs are considered.

• In this course we will always assume the resource we are most

concerned is the computational time

• When we analyze multiple viable candidates, we will be able to

identify which are the most efficient once and which are not.

3

Model of Computation

• Time efficiency estimates depend on what we define to be a step.

• One might consider addition of two number as one step

• This assumption may not be warranted in certain contexts.

• For example, if the numbers involved in a computation may be

arbitrarily large, the time required by a single addition can no longer

be assumed to be constant.

• To be able to compare algorithms based on efficiency we need to

define a standard of some sort.

• Before we can analyze an algorithm we must have a model of the

implementation technology that we will use.

4

Model of Computation: Cost Models

• Two cost models are generally used:

• uniform cost model

• Also called uniform-cost measurement

• Assigns a constant cost to every machine operation, regardless of the

size of the numbers involved

• logarithmic cost model

• Also called logarithmic-cost measurement

• Assigns a cost to every machine operation proportional to the

number of bits involved

• Models should also set standards on parameters such as number of

processors and memory access pattern and time.

5

Model of Computation: RAM Model

• For this course we use we assume a generic one processor, random

access machine (RAM) model of computation.

• In the RAM model instructions are executed once after another with

no concurrent operations.

• Strictly speaking we should precisely define the instructions of the

RAM model and their cost

• Doing so would be tedious and offer little insight into algorithm

design and analysis.

• We make assumptions about the instructions and leave out listing

the available instructions and their cost explicitly.

6

Model of Computation: RAM Model

• We should not abuse this model

• E.g., By assuming instruction that would not realistically be available

in real computers such as an instruction to sort.

• RAM model has operations for

• Arithmetic (add, subtract, multiply, divide, remainder, floor, and

ceiling)

• Data movement (load, store, copy)

• Control (conditional and unconditional branch, subroutine call and

return)

• Basic data types like integer and floating point

7

Model of Computation: Other Models

• Some real computers sometimes have more instructions than those

defined here

• For example xy is a multiple instruction operation but when x = 2 it

can be done with a single instruction which is shifting.

• In real computer there exists a multi-level memory hierarchy (cache,

primary memory and virtual memory)

• We do not consider these in the RAM model and in this course

• Other models (more in the lecture note)

• External Memory Model

• Cache Oblivious Model

8

Efficiency

• Remember: Different algorithms can be devised to solve a single

problem.

• Each of these algorithms will differ dramatically in their efficiency.

• Efficiency is the comparison of what is actually produced or

performed with what can be achieved with the same consumption of

resources (money, time, labor, etc.).

• This difference in efficiency is even much more significant than the

hardware and software the solutions are implemented on.

9

Efficiency: Insertion vs Merge Sort

• Two well know sorting algorithms are insertion sort and merge sort.

• for an input size of N and two independent constants C1and c2

• Insertion sort takes C1N
2 time

• Merge sort takes C2N logN time

• After a certain input size merge sort clearly outperforms insertions

sort

• For example C1 = 10 and C2 = 200, N ≃ 150

10

Efficiency: Insertion vs Merge Sort

N Insertion Sort Merge Sort Efficient Algorithm

2 40 400 Insertion

10 1000 6643.85619 Insertion

20 4000 17287.7124 Insertion

30 9000 29441.3436 Insertion

40 16000 42575.4248 Insertion

50 25000 56438.5619 Insertion

60 36000 70882.6871 Insertion

70 49000 85809.9622 Insertion

80 64000 101150.85 Insertion

90 81000 116853.356 Insertion

100 100000 132877.124 Insertion

120 144000 165765.374 Insertion

140 196000 199619.924 Insertion

150 225000 216864.561 Merge

160 256000 234301.699 Merge

170 289000 251919.292 Merge

180 324000 269706.711 Merge

190 361000 287654.513 Merge

Table 1: Running time for insertion sort and merge sort with

c1 = 10 and c2 = 200

11

Efficiency: Insertion vs Merge Sort

Figure 1: Asymptotic Comparison of running times of insertion sort and merge

sort

12

Another Reason to Analyze Algorithms

• If speed and cost were not an issue do we still need to study how to

analize to algorithms ?

• Yes, We still have to study algorithms to show they actually

terminate and do so with the right answer

• This means proof their correctness.

• In reality, though, both speed and cost associated with algorithms is

an issue and we want to study it.

13

Another Reason to Analyze Algorithms

• If speed and cost were not an issue do we still need to study how to

analize to algorithms ?

• Yes, We still have to study algorithms to show they actually

terminate and do so with the right answer

• This means proof their correctness.

• In reality, though, both speed and cost associated with algorithms is

an issue and we want to study it.

13

Example: Recap

• Analyzing algorithm refers to figuring out the amount of resource

required to execute it.

• We do this in relation to its time complexity

• Hence it refers to the time it takes to execute the algorithm

• Remember we assumed elementary operations in our computational

model to take a a single unit of time

• Hence, counting the number of these operations performed by the

algorithm will give as the total time required to execute the

algorithm.

14

Example: Insertion Sort

p rocedu r e i n s e r t i o n S o r t (A : l i s t o f s o r t a b l e i t ems)

f o r j = 2 to l e n g t h [A]

do key = A[j]

// I n s e r t A [j] i n t o the s o r t e d sequence A [1 . . . j −1]

i = j − 1

wh i l e i > 0 and A[i] > key

do A[i + 1] = A[i]

i = i − 1

end wh i l e

A [i + 1] = key

end f o r

end p rocedu r e

15

Example: Notes

• Let’s analyze the time complexity of insertion sort with an

implementation presented above

• The time taken by the insertion sort procedure depends on

• Input size: sorting a thousand numbers takes longer than ten

• Input sort status: sorting an input already nearly sorted would be

faster than a reversely sorted input

• We need to describe running time as a function of input size

• The notion of input size depends on the problem being studied

• For many problems it is the number of items in the input

• For others such as multiplying integers the best measure is the total

number of bits

• In other cases such as graph problems the input will described by

more than one number

• We shall indicate which input size measure is being used with each

problem we study

16

Example: Insertion Sort

• The running time of an algorithm on a particular input is the

number of primitive operations or steps executed.

• It is convenient to define the notion of steps to make it

machine-independent.

• It take a constant time to execute each line of our pseudocode but

one line may take a different amount of time that the other.

• Let say line i of the pseudocode takes ci to execute and the inner

while loop tests tj times for the j th item.

17

Example: Insertion Sort

Figure 2: Running Time Analysis of Insertion Sort

18

Example: Insertion Sort

• The total running time of the algorithm is the sum of running times

of each statement executed

T (n) = C1n + C2(n − 1) + C4(n − 1) + C5sum
n
j=2tj+

C6sum
n
j=2(tj − 1) + C7sum

n
j=2(tj − 1) + C8(n − 1)

19

Example: Insertion Sort

• Running time of a program depends on the input size and in this

case the level of sorting it already is in.

• For insertion sort the best case is when the input is already sorted in

which case for each j = 2, 3...n A[i] < key in the first iteration of

the while loop (i = j − 1) hence tj = 1 leading to the following

equation.

T (n) = C1n + C2(n − 1) + C4(n − 1) + C5(n − 1) + C8(n − 1)

T (n) = (C1 + C2 + C4 + C5 + C8)n − (C2 + C4 + C5 + C8)

• Let’s replace the constants

T (n) = An − B

20

Example: Insertion Sort

• If the array was in reverse order the algorithm will face its worst case

results since we must compare each A[j] with all the elements in the

sorted portion of the array

n∑
j=2

j =
n(n + 1)

2
− 1

n∑
j=2

j − 1 =
n(n − 1)

2

21

Example: Insertion Sort

T (n) = C1n + C2(n − 1) + C4(n − 1) + C5(
n(n − 1)

2
− 1)+

C6(
n(n − 1)

2
) + C7(

n(n − 1)

2
) + C8(n − 1)

T (n) = (
C5

2
+

C6

2
+

C7

2
)n2 + (C1 + C2 + C4 +

C5

2
− C6

2
+

C7

2
+ C8)n

−(C2 + C4 + C5 + C8)

• Let’s replace the constants

T (n) = An2 + Bn − C

22

Example: Insertion Sort

• So we can express the worst case running time as

T (n) = An2 + Bn + C

• We used some simplifying abstractions to ease our analysis by

ignoring actual statement cost and even the abstracts costs Ci .

• We normally even further simplify this by only considering rate of

growth or order of growth instead of the actual running time.

• We do this because what we really want to know is how our

algorithm performance compared to others for large input sizes.

23

Example: Insertion Sort

• We only consider the leading term An2 since the lower order terms

• Bn and C will have relatively insignificant for the large values of n

compared to the first once.

• We even ignore the coefficient a due to similar reasons as to why we

ignored the other terms to be left with n2

• We consider n2 as our order of growth.

• We call this the theta notation and it is presented as Θ(n2)

• We will return to the idea of asymptotic notation in a bit

24

Correctness of An Algorithm

Introduction

• In addition to analyzing the resource requirement one should proof

its correctness.

• Proving the correctness means that showing that the algorithm

halts with correct answer for all valid inputs

• There are several methods to prove the correctness of an algorithm

• In this course the primary technique we will use for proving

correctness of an algorithm is mathematical induction

• Another less formal way of proving is Intuitive Reasoning

• It explains why the algorithm works using natural language and

logical reasoning.

• This method is often the first step in proving correctness, providing a

high-level understanding of the algorithm.

25

Introduction: Key Concepts

• Two key Concepts

• Inductive Proofs: Use mathematical induction to prove correctness

• Loop Invariant: Identify a property (invariant) that holds before and

after each iteration of a loop.
• Steps

• Initialization: Show the invariant holds before the first iteration.

• Maintenance: Show that if the invariant holds before an iteration, it

holds after the iteration.

• Termination: Show that when the loop terminates, the invariant and

the loop condition together imply the desired result

26

Loop Invariant: Definition

• A loop invariant is a property of a program loop that is true before

(and after) each iteration.

• It is a logical assertion, sometimes checked within the ode by an

assertion call.

• Knowing its invariant(s) is essential in understanding the effect of a

loop.

• It is what we will use to prove in the base case and the inductive

step.

• We use the loop invariant to help us understand why an algorithm is

correct.

27

Loop Invariant: Example

• In the pseudocode of insertion sort presented earlier, j indicates the

current card being inserted.

• At the beginning of the outer loop (i.e., for loop), which is indexed

by j , the sub array containing elements A[1...j − 1] consists of the

currently sorted hand and elements A[j + 1...n] correspond to the

pile of cards still on the table.

• Elements A[1...j − 1] are the elements originally positions 1 through

j − 1 but now in a sorted order.

• We state these properties formally as loop invariants
At the start of each iteration of the for loop of lines 2-8,

the subarray A[1...j − 1] consists of the elements originally in

A[1..j − 1] but in a sorted order

28

Correctness Proof

• We must show three things about a loop invariant to proof an

algorithm’s correctness

• Initialization: It is true prior to the first iteration of the loop

• Maintenance: If it is true before an iteration of the loop, it remains

true before the next iteration

• Termination: when the loop terminates, the invariant gives us a

useful property that helps show that the algorithm is correct

• Notice the similarity of this approach to mathematical induction

29

Correctness Proof: Similarity to Mathematical Induction

• In mathematical induction we need to proof the base case and then

the inductive step.

• In proving correctness of algorithms

• Showing the loop invariant holds for the first iteration is the base

case

• Showing that the invariant holds from iteration to iteration is like the

inductive case.

• One important difference from mathematical induction is the third

step in which we show the correctness for the termination case.

• In mathematical induction we show that the inductive step holds

infinitely, here we stop the induction when the loop terminates.

30

Example: Insertion Sort

procedure i n s e r t i o n S o r t (A : l i s t o f s o r t a b l e i t ems)

f o r j = 2 to l e n g t h [A]

do key = A[j]

// I n s e r t A [j] i n t o the s o r t e d sequence A [1 . . . j −1]

i = j − 1

whi le i > 0 and A[i] > key

do A[i + 1] = A[i]

i = i − 1

end whi le

A[i + 1] = key

end fo r

end procedure

Insertion Sort: Card Demo — Dance Demo

31

https://www.youtube.com/watch?v=G2ZVckcv3xI
https://www.youtube.com/watch?v=EdIKIf9mHk0

Example: Insertion Sort Proof

• Loop Invariant: At the j th iteration the elements [1...j − 1] are

sorted relative to themselves.

• Initialization:

• We start by showing that the loop invariant holds before the first

loop iteration when j = 2.

• The subarray [1...j − 1], therefore, consists of just the single element

A[1], which in fact it the original element A[1].

• This array is sorted (trivial)

32

Example: Insertion Sort Proof

• Loop Invariant: At the j th iteration the elements [1...j − 1] are

sorted relative to themselves.

• Initialization:

• We start by showing that the loop invariant holds before the first

loop iteration when j = 2.

• The subarray [1...j − 1], therefore, consists of just the single element

A[1], which in fact it the original element A[1].

• This array is sorted (trivial)

32

Example: Insertion Sort Proof

• Maintenance:

• In the algorithm the for loop works by moving

A[j − 1], A[j − 2], A[j − 3] and so on by one position to the right

until the right position for A[j] is found at which point the value of

A[j] is inserted.

• More formally, though, it is required to show the loop invariant of

the inner loop as well.

• Here, however, we will not go into such detail for the time being

• Termination:

• The outer loop end when j exceeds n

• This is when j = n + 1 substituting n + 1 for j in the wording of

loop invariant we have the subarrayA[1...n] consists of the elements

originally in A[1..n] but in a sorted order.

• But the subarray A[1...n] is the entire array which means the entire

array is sorted

33

Example: Insertion Sort Proof

• Maintenance:

• In the algorithm the for loop works by moving

A[j − 1], A[j − 2], A[j − 3] and so on by one position to the right

until the right position for A[j] is found at which point the value of

A[j] is inserted.

• More formally, though, it is required to show the loop invariant of

the inner loop as well.

• Here, however, we will not go into such detail for the time being

• Termination:

• The outer loop end when j exceeds n

• This is when j = n + 1 substituting n + 1 for j in the wording of

loop invariant we have the subarrayA[1...n] consists of the elements

originally in A[1..n] but in a sorted order.

• But the subarray A[1...n] is the entire array which means the entire

array is sorted

33

Example: Insertion Sort Proof

• Maintenance:

• In the algorithm the for loop works by moving

A[j − 1], A[j − 2], A[j − 3] and so on by one position to the right

until the right position for A[j] is found at which point the value of

A[j] is inserted.

• More formally, though, it is required to show the loop invariant of

the inner loop as well.

• Here, however, we will not go into such detail for the time being

• Termination:

• The outer loop end when j exceeds n

• This is when j = n + 1 substituting n + 1 for j in the wording of

loop invariant we have the subarrayA[1...n] consists of the elements

originally in A[1..n] but in a sorted order.

• But the subarray A[1...n] is the entire array which means the entire

array is sorted

33

Example: Insertion Sort Proof

• Maintenance:

• In the algorithm the for loop works by moving

A[j − 1], A[j − 2], A[j − 3] and so on by one position to the right

until the right position for A[j] is found at which point the value of

A[j] is inserted.

• More formally, though, it is required to show the loop invariant of

the inner loop as well.

• Here, however, we will not go into such detail for the time being

• Termination:

• The outer loop end when j exceeds n

• This is when j = n + 1 substituting n + 1 for j in the wording of

loop invariant we have the subarrayA[1...n] consists of the elements

originally in A[1..n] but in a sorted order.

• But the subarray A[1...n] is the entire array which means the entire

array is sorted

33

Example: Bubble Sort

procedure bubb l eSo r t (A)

f o r i = n−1 down to 0 do

fo r j = 0 to i do

i f A[j +1] < A[j] then

tmp = A[j +1]

A[j +1] = A[j]

A [j] = tmp

end i f

end fo r

end fo r

end procedure

Insertion Sort: Card Demo — Dance Demo

34

https://www.youtube.com/watch?v=MyK66kwM-0o
https://www.youtube.com/watch?v=Iv3vgjM8Pv4

Example: Bubble Sort Proof

• Loop Invariant: At the i th iteration the last i elements [n − i ,n]

are sorted relative to themselves and are all greater than all elements

in [1,n − i − 1].

• Initialization:

• Before the first loop iteration i = n − 1.

• The subarray [n − i ...n] consists of no element as n − n − 1 = n,

and A[n] is empty as we are using 0 based index.

• This array is sorted (trivial)

35

Example: Bubble Sort Proof

• Maintenance:

• In the algorithm the inner for loop bubbles the maximum element

from A[0], A[1], A[2], ... A[i] to the end (i.e., the i th position.

• This means if we assume the elements i to n are sorted and they are

all greater than all elements 0 − i − 1 in the i th iteration, then on

the so on (i + 1)th iteration the biggest element from

A[0], A[1], A[2], ... A[i − 1] will be on (i − 1)th location making

the lats (i + 1) sorted hence maintaining the loop invariant.

• Termination:

• The outer loop end when i becomes 0 hence from the loop invariant

we have when the loop terminates the last n − 0 elements are sorted

which means the entire list is sorted.

36

Rate of Growth

Comparing Mathematical Functions

• Assume all (mathematical) functions take only positive arguments

and values.

• Different algorithms for the same problem may have different

(worst-case) running times.

• Example of sorting: bubble sort, insertion sort, quick sort, merge

sort, etc.

• Bubble sort and insertion sort take roughly n2 comparisons while

quick sort (only on average) and merge sort take roughly n log2 n

comparisons.

• ”Roughly” hides potentially large constants, e.g., running time of

merge sort may in reality be 10nlog2n.

• How can make statements such as the following, in order to compare

the running times of different algorithms?

• 100nlog2n ≤ n2

• 10000n ≤ n2

• 5n24n ≥ 1000nlogn

37

Comparing Mathematical Functions

• Assume all (mathematical) functions take only positive arguments

and values.

• Different algorithms for the same problem may have different

(worst-case) running times.

• Example of sorting: bubble sort, insertion sort, quick sort, merge

sort, etc.

• Bubble sort and insertion sort take roughly n2 comparisons while

quick sort (only on average) and merge sort take roughly n log2 n

comparisons.

• ”Roughly” hides potentially large constants, e.g., running time of

merge sort may in reality be 10nlog2n.

• How can make statements such as the following, in order to compare

the running times of different algorithms?

• 100nlog2n ≤ n2

• 10000n ≤ n2

• 5n24n ≥ 1000nlogn

37

Comparing Mathematical Functions

200 400 600 800 1,000

0.2

0.4

0.6

0.8

1

·107

n

10000 ∗ n vs. n2

10000 ∗ n

n2

38

Comparing Mathematical Functions

0.5 1 1.5 2

·104

1

2

3

4

·108

n

10000 ∗ n

n2

39

Upper Bound: Definition

Asymptotic upper bound: A function f (n) is O(g(n)) if there exists a

constant c > 0 and n0 ≥ 0 such that for all n ≥ n0 f (n) ≤ cg(n)

0.5 1 1.5 2

·104

1

2

3

4

·108

n0

n

10000 ∗ n is O(n2)

10000 ∗ n

n2

40

Upper Bound: Example

• If c = 1 then no = 103

0.5 1 1.5 2

·104

1

2

3

4

·108

n0

n

10000 ∗ n is O(n2)

10000 ∗ n

n2

41

Upper Bound: Example

• If c = 100 then no = 100

50 100 150 200

1

2

3

4

·106

n0

n

10000 ∗ n is O(n2)

10000 ∗ n

n2

42

Lower Bound: Definition

Asymptotic lower bound: A function f (n) is Ω(g(n)) if there exists a

constant c > 0 and n0 ≥ 0 such that for all n ≥ n0 f (n) ≥ cg(n)

20 40 60 80 100

100

200

300

n0 n

y

n log2
n
10 and Ω(n)

n log2
n
10

n

43

Lower Bound: Example

• If c = 1/10 then no = 10

10 20 30 40

20

40

60

80

n0 n

y

n log2
n
10 and Ω(n)

n log2
n
10

n

44

Lower Bound: Meanings in Different Contexts

• Mathematical functions: n is a lower bound for nlogn/10, i.e.,

nlogn/10 = Ω(n).

• This statement is purely about these two functions.

• Not in the context of any algorithm or problem.

• Algorithms:

• The lower bound on the running time of bubble sort is Ω(n2)

• There is some input of n numbers that will cause bubble sort to take

at least Ω(n2) time

• But there may be other, faster algorithms for sorting.

• Problems:

• The problem of sorting n numbers has a lower bound of Ω(nlogn)

• For any comparison-based sorting algorithm, there is at least one

input for which that algorithm will take Ω(nlogn) steps.

• The stable matching problem has a lower bound of Ω(n2)

45

Tight Bound: Definition

Asymptotic lower bound: A function f (n) is Θ(g(n)) if f (n) is

O(g(n)) and f (n) is Ω(g(n))

−0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

·104

0.5

1

1.5

2

·109

n0
n

y

10n2 + 4n and Θ(n2)

10n2 + 4n

Upper Bound 20n2

Lower Bound 1
2
n2

46

Tight Bound: Example

5 10 15 20 25 30

1

2

·105

n

5n3 + 3n2 and Θ(n3)

5n3 + 3n2

Upper Bound 10n3

Lower Bound 2n3

47

Properties of Asymptotic Growth Rates

• Transitivity

• If f = O(g) and g = O(h), then f = O(h).

• If f = Ω(g) and g = Ω(h), then f = Ω(h).

• If f = Θ(g) and g = Θ(h), then f = Θ(h).

• Additivity

• If f = O(h) and g = O(h), then f + g = O(h)

• Similar statements hold for lower and tight bounds

• If f = O(g), then f + g = Θ(g)

48

Properties of Asymptotic Growth Rates

• Transitivity

• If f = O(g) and g = O(h), then f = O(h).

• If f = Ω(g) and g = Ω(h), then f = Ω(h).

• If f = Θ(g) and g = Θ(h), then f = Θ(h).

• Additivity

• If f = O(h) and g = O(h), then f + g = O(h)

• Similar statements hold for lower and tight bounds

• If f = O(g), then f + g = Θ(g)

48

Example Asymptotic Growth Rates

f (n) g(n) Reason

pn2 + qn + r Θ(n2)

pn2 + qn + r O(n3) n2 ≤ n3, if n ≥ 1∑
0≤i≤d ain

i Θ(nd)
if d > 0 is an integer constant

and ad > 0

loga n O(logb n) For any pair of constantsa, b > 1

49

Example Asymptotic Growth Rates

100 200 300 400 500 600 700 800 900 1,000 1,100

102

104

106

108

n

T (n)

Different growth rates (log scale)

log n
n

n log n

n2

n3

2n

50

Example Problems: Searching and Sorting

• Searching

• Linear Search : Θ(n)

• Binary Search : Θ(logn)

• Sorting

• Most efficient solution : Θ(nlogn)

• Insertion, Bubble, Selection: Θ(n2)
• Merge Sort

• Worst-case: Θ(nlogn)

• Average-case: Θ(nlogn)

• Best-case: Θ(nlogn)

• Quick Sort
• Worst-case: Θ(n2)

• Average-case: Θ(nlogn)

• Best-case: Θ(nlogn)

• Other Problems

• Stable Matching: Θ(n2)

• 0-1 Knapsack: Θ(n2)
• Fractional Knapsack: Θ(nlogn)

• The costliest step is sorting
51

Example Problems: Other Problems

• Stable Matching: Θ(n2)

• Knapsack:

• 0-1 Knapsack: Θ(n2)
• Fractional Knapsack: Θ(nlogn)

• The costliest step is sorting

• Graph Coloring

• A method of assigning colors to the vertices of a graph such that no

two adjacent vertices share the same color.

• This problem has several applications in fields such as scheduling,

register allocation in compilers, and frequency assignment in wireless

networks.

• Greedy Vertex Algorithm: O(V + E)

• Backtracking Algorithm: Exponential O(kV)

• DSatur Algorithm: O(V 2logV + VE)

52

Example Problems: Other Problems

• Matrix Multiplication

• Time Complexity O(n3)

• We have a way to slightly improve this

• Solving the Traveling Salesman Problem (TSP) using brute-force

• Time Complexity O(2n)

• Generating all permutations of a string.

• Given a string of length n, generating all possible permutations

involves n! operations

• Accessing an element in an array

• Time Complexity Θ(1)

53

Summary

Takeaway

• Algorithm Analysis

• Means finding out the resource it take execute an algorithm

• Proving it terminates with correct result

• Key concepts

• Prove by induction

• Loop invariant: Statements to prove over the three steps

• Comparing time complexity

• Three Cases

• Best Case

• Average Case

• Worst Case

• Rate of growth

• Big O

• Theta

• Big Omega

54

Things to know

• Algorithm Analysis

• Identifying the loop invariant
• Using the modified mathematical induction to prove correctness of

an algorithm

• Initialization

• Maintenance

• Termination

• Identifying the best and worst case of an algorithm

• Both when that occurs and the runtime

• Rate of growth

55

	Algorithm Analysis
	Correctness of An Algorithm
	Rate of Growth
	Summary

