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The Problem



Origin

• Originated in 1962 by David Gale and Lloyd Shapley

• They wanted to implement a self-enforcing college admissions

process

• This is also called Gale-Shapley Matching

• National Resident Matching Program had been using a very similar

procedure
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Goal

• Given of preferences among employers (E) and applicants (A), can

we come up with a stable matching?

• What is stable?

• For every applicants a ∈ A who is not scheduled to work for e ∈ E ,
at least one of the following is true

• e prefers every one of its accepted applicants to a; or

• a prefers her current situation over working for employer e.

• Conversely, a matching of applicants (a, e)and(a′, e′) for
e, e′ ∈ Eanda, a′ ∈ A is unstable if both of the following hold

• e prefers a′ over a

• a′ prefers e over e′
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Reformulation

• So consider a set M = m1, ...,mn of n men, and a set

W = w1, ...,wn of n women.

• Let MxW denote the set of all possible ordered pairs of the form

(m,w), where m ∈ M and w ∈ W .

• A set of ordered pairs S ∈ (MxW ) is

• A matching, if each member of M and each member of W appears

in at most one pair in S .

• A perfect matching, if each member of M and each member of W

appears in exactly one pair in S .
• Stable, if one of the following holds for every pair a, e ∈ S

• e prefers every one of its accepted applicants to a; or

• a prefers her current situation over working for employer e.
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Example: Input 1

• Each man ranks all the women in order of preference.

• Each woman ranks all the men in order of preference.

• Each person uses all ranks from 1 to n, i.e., no ties, no incomplete

lists.

Men 1 2 3 4

Alex Callie Christina Meredith Miranda

Derek Meredith Miranda Christina Callie

Jackson Meredith Miranda Christina Callie

Preston Christina Miranda Callie Meredith
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Example: Input 2

Women 1 2 3 4

Callie Alex Derek Jackson Preston

Christina Derek Preston Jackson Alex

Meredith Derek Jackson Preston Alex

Miranda Derek Jackson Alex Preston
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Example: Matching

C
a
lli
e

C
h
ri
st
in
a

M
er
ed

it
h

M
ir
a
n
d
a

Alex 1 2 3 4

Derek 4 3 1 2

Jackson 4 3 1 2

Preston 3 1 4 2

A
le
x

D
er
ek

J
a
ck

so
n

P
re
st
o
n

Callie 1 2 3 4

Christina 4 1 3 2

Meredith 4 1 2 3

Miranda 3 1 2 4

• Matching: each man is paired with ≤ 1 woman and vice versa.

• Perfect matching: each man is paired with exactly one woman and

vice versa.

Note

”Perfect”: only means one-to-one mapping, not that people are

happy with matches or its stable.
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Other ”matching”
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Other ”matching”
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Our Matching
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Our Matching

C
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ed
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Rogue couple: a man and a woman who are not matched but prefer

each other to their current partners.
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Stable Matching

C
a
lli
e

C
h
ri
st
in
a

M
er
ed

it
h

M
ir
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Stable matching: A perfect matching without any rogue couples.

Questions

1. Given preferences for every woman and every man, does a

stable matching exist?

2. If it does, can we compute it? How fast?
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The Algorithm



Objective

• Given of preferences among employers (E) and applicants (A), can

we come up with a stable matching?

• We will start with a simple version of the problem

• Let’s assume there are only two men and two women
• What are the possible permutations of preferences?

• M1[W1,W2];M1[W2,W1]

M2[W1,W2];M2[W2,W1]

• W1[M1,M2];W1[M2,M1]

W2[M1,M2];W2[M2,M1]
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Possible Matching

Example

W1 W2

M1 1 2

M2 1 2

M1 M2

W1 1 2

W2 1 2

W1 W2

M1 1 2

M2 1 2

M1 M2

W1 2 1

W2 2 1

W1 W2

M1 1 2

M2 2 1

M1 M2

W1 2 1

W2 1 2

Stable Matching

16



Possible Matching

Example

W1 W2

M1 1 2

M2 1 2

M1 M2

W1 1 2

W2 1 2

W1 W2

M1 1 2

M2 1 2

M1 M2

W1 2 1

W2 2 1

W1 W2

M1 1 2

M2 2 1

M1 M2

W1 2 1

W2 1 2

Stable Matching

16



Possible Matching

Example

W1 W2

M1 1 2

M2 1 2

M1 M2

W1 1 2

W2 1 2

W1 W2

M1 1 2

M2 1 2

M1 M2

W1 2 1

W2 2 1

W1 W2

M1 1 2

M2 2 1

M1 M2

W1 2 1

W2 1 2

Stable Matching

16



Possible Matching

Example

W1 W2

M1 1 2

M2 1 2

M1 M2

W1 1 2

W2 1 2

W1 W2

M1 1 2

M2 1 2

M1 M2

W1 2 1

W2 2 1

W1 W2

M1 1 2

M2 2 1

M1 M2

W1 2 1

W2 1 2

Stable Matching

16



Possible Matching

Example

W1 W2

M1 1 2

M2 1 2

M1 M2

W1 1 2

W2 1 2

W1 W2

M1 1 2

M2 1 2

M1 M2

W1 2 1

W2 2 1

W1 W2

M1 1 2

M2 2 1

M1 M2

W1 2 1

W2 1 2

Stable Matching

16



Possible Matching

Example

W1 W2

M1 1 2

M2 1 2

M1 M2

W1 1 2

W2 1 2

W1 W2

M1 1 2

M2 1 2

M1 M2

W1 2 1

W2 2 1

W1 W2

M1 1 2

M2 2 1

M1 M2

W1 2 1

W2 1 2

Stable Matching

16



Possible Matching

Example

W1 W2

M1 1 2

M2 1 2

M1 M2

W1 1 2

W2 1 2

W1 W2

M1 1 2

M2 1 2

M1 M2

W1 2 1

W2 2 1

W1 W2

M1 1 2

M2 2 1

M1 M2

W1 2 1

W2 1 2

Stable Matching

16



Possible Matching

Example

W1 W2

M1 1 2

M2 1 2

M1 M2

W1 1 2

W2 1 2

W1 W2

M1 1 2

M2 1 2

M1 M2

W1 2 1

W2 2 1

W1 W2

M1 1 2

M2 2 1

M1 M2

W1 2 1

W2 1 2

Stable Matching

16



Possible Matching

Example

W1 W2

M1 1 2

M2 1 2

M1 M2

W1 1 2

W2 1 2

W1 W2

M1 1 2

M2 1 2

M1 M2

W1 2 1

W2 2 1

W1 W2

M1 1 2

M2 2 1

M1 M2

W1 2 1

W2 1 2

Stable Matching

16



Challenge

Can you create an example that does not have a stable matching?
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GS Algorithm

Initially all men and women are free

while there is a man m who is free and hasn’t proposed to every woman

Choose such a man m

m proposes to the highest-ranked woman in m’s preference list to whom m has not yet proposed to

if w is free then

(m, w) become engaged -> Add (m,w) from S

else if w is engaged to m’ but prefers m to m’ then

m’ becomes free -> Delete (m’,w) from S

(m, w) become engaged -> Add (m,w) from S

else

m remains free

return the set S of engaged pairs
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Does it work ?

The Algorithm

• Each man proposes to each woman, in decreasing order of

preference.

• Woman accepts if she is free or prefers new prospect to

current fiance.

What can go wrong?

• Does the algorithm even terminate?

• If it does, how long does the algorithm take to run?

• If it does, is S a perfect matching? A stable matching ?

19



Observations

• Gale-Shapley algorithm computes a matching, i.e., each woman

paired with at most one man and vice versa.

• Man’s status: Can alternate between being free and being engaged.

• Woman’s status: Remains engaged after first proposal.

• Ranking of a man’s partner: Remains the same or goes down.

• Ranking of a woman’s partner: Can never go down.

Proof?

Can we prove that that GS algorithms produces a terminates with

stable matching

20



Proof: Algorithm Terminates/Runtime

• Is there some quantity that we can use the measure the progress of

the algorithm in each iteration?

• Number of free men?
• Number of free women?

• No, since both can remain unchanged in an iteration.

• Number of proposals made after k iterations?

• Must increase by one in each iteration.

• How many total proposals can be made?

• n2

• The algorithm must terminate in n2 iterations

21
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the algorithm in each iteration?

• Number of free men?
• Number of free women?

• No, since both can remain unchanged in an iteration.

• Number of proposals made after k iterations?

• Must increase by one in each iteration.

• How many total proposals can be made?

• n2

• The algorithm must terminate in n2 iterations
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Correctness Proof: Matching Computed is Perfect

• Suppose the set S of pairs returned by the GS algorithm is not

perfect.

• S is a matching. Therefore, there must be at least one free man m.

• m has proposed to all the women (since algorithm terminated).

• Therefore, each woman must be engaged (since she remains

engaged after the first proposal to her).

• Therefore, all men must be engaged, contradicting the assumption

that m is free.

• Proof that matching is perfect relies on

• proof that the algorithm terminated and

• the very specific termination condition.
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Correctness Proof: Matching Computed is Stable

Perfect matching S returned by algorithm
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Correctness Proof: Matching Computed is Stable

• Not stable: m1 paired with w1 but prefers w2;

• w2 paired with m2 but prefers m1
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Correctness Proof: Matching Computed is Stable

m1 proposed to w2 before proposing to w1
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Correctness Proof: Matching Computed is Stable

Remember: What happened when m1 proposed to w2?
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Correctness Proof: Matching Computed is Stable

Case 1: w2 rejected w1 because she preferred current partner m3?
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Correctness Proof: Matching Computed is Stable

Case 1: At termination w2 must prefer her final partner m2 to m3.

Contradicts consequence of instability: m2 prefers m1 to m2?
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Correctness Proof: Matching Computed is Stable

Case 2: w2 accepted m1 because she had no partner or preferred m1 to

current partner m3?
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Correctness Proof: Matching Computed is Stable

Case 2: By instability, we know w2 prefers m1 to m2. But at

termination, w2 is matched with m2, which contradicts property that a

woman switches only to a better match.
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Correctness Proof: In Words

• Suppose S is not stable,

• there are two pairs (m1,w1) and (m2,w2) in S such that m1 prefers

w2 to w1 and w2 prefers m1 to m2.

• m1 must have proposed to w2 before w1

• At that stage w2 must have rejected m1

• otherwise, the algorithm would pair m1 and w2,

• would prevent the pairing of m2 and w2 in a later iteration of the

algorithm.

• When w2 rejected m1, she must have been paired with some man,

say m3, whom she prefers to m1.

• Since m2 is paired with w2 at termination, w2 must prefer to m2 to

m3 or m2 = m3,

• contradicts our conclusion that w2 prefers m1 to m2.
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Variants: Hospitals and residents

• Multiple residents

• Each hospital can take multiple residents.

• Modification of Gale-Shapley algorithm works.

• Some residents may not be matched.

• Some hospitals may not fill quota.

• Hospitals and residents with couples

• Each hospital can take multiple residents.

• A couple must be assigned together, either to the same hospital or

to a specific pair of hospitals chosen by the couple

• NP-Complete
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Variants: Others

• Stable roommates

• There is only one pool of people

• Stable matching may not exist.

• Irving’s algorithm; more complex than Gale-Shapley.

• Complex preferences

• Preferences may be incomplete or have ties or people may lie.

• Several variants are NP-hard, even to approximate.
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A Few More Problems



Interval Scheduling: Idea

• Say you have a resource to be scheduled for

• It may be a lecture room, a supercomputer, or an electron

microscope

• Many people request to use the resource for periods of time.

• A request takes the form:

• Can I reserve the resource starting at time s, until time f ?

• We will assume that the resource can be used by at most one person

at a time.

• A scheduler wants to accept a subset of these requests, rejecting all

others, so that the accepted requests do not overlap in time.

• The goal is to maximize the number of requests accepted.
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Interval Scheduling: Formally

• There will be n requests labeled 1, ..., n

• Each request i specifying a start time si and a finish time fi

• We have si < fi for all i

• Two requests i and j are compatible if the requested intervals do not

overlap:

• either request i is for an earlier time interval than request j(fi ≤ sj),

• or request i is for a later time than request j(fjsi ).

• Generally that a subset A of requests is compatible if all pairs of

requests i , j ∈ A, i ̸= j are compatible.

• The goal is to select a compatible subset of requests of maximum

possible size.

• Interval Scheduling has a Greedy Algorithm Solution

35



Interval Scheduling: Visually

Visualization of Interval Scheduling 1

1Image Credit: https:

//stumash.github.io/Algorithm_Notes/greedy/intervals/intervals.html
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Weighted Interval Scheduling

• A modification to Interval Scheduling Problem

• Suppose more generally that each request interval i has an

associated value, or weight, vi > 0

• We could picture this as the amount of money we will make from the

i th individual if we schedule his or her request.

• Our goal will be to find a compatible subset of intervals of maximum

total value.

• The case in which vi = 1 for each i is simply the basic Interval

Scheduling Problem

• The appearance of arbitrary values changes the nature of the

maximization problem quite a bit.
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Weighted Interval Scheduling

• Consider, for example, that if v1 exceeds the sum of all other vi ,

then the optimal solution must include interval 1 regardless of the

configuration of the full set of intervals.

• So any algorithm for this problem must be very sensitive to the

values, and yet degenerate to a method for solving (unweighted)

interval scheduling when all the values are equal to 1.

• There appears to be no simple greedy rule that walks through the

intervals one at a time, making the correct decision in the presence

of arbitrary values.

• Instead, we employ a technique, dynamic programming

• It builds up the optimal value over all possible solutions in a

compact, tabular way that leads to a very efficient algorithm.

38



Bipartite Matching

• A bipartite graph is a graph whose vertices can be divided into two

disjoint sets U and V such that every edge connects a vertex in U to

one in V.

• Bipartite matching involves finding a maximum matching, which is

the largest subset of edges such that no two edges share a common

vertex.

• Used in job assignments, network flows, and resource allocation.
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Bipartite Matching

A bipartite graph 2

2Image Credit: ”Algorithm Design” Jon Kleinberg and Eva Tardos - Addison Wesley

(2005)
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Bipartite Matching

• Maximum matching is the largest set of edges with no shared

vertices.

• Perfect matching a matching that covers every vertex in the graph.

• Augmenting Path a path that can increase the size of the current

matching.

• Algorithms for Bipartite Matching

• Hungarian Algorithm: Efficient for finding maximum matching in

bipartite graphs.

• Hopcroft-Karp Algorithm: Improves performance for large bipartite

graphs.

• Interval scheduling can be transformed into a bipartite matching

problem by representing intervals as nodes in a bipartite graph.
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Independent Set: The Problem

• Given a graph G = (V, E), we say a set of nodes S V is independent

if no two nodes in S are joined by an edge.

• The Independent Set Problem is, then, the following: Given G, find

an independent set that is as large as possible.

• The Independent Set Problem encodes any situation in which you

are trying to choose from among a collection of objects and there

are pairwise conflicts among some of the objects.

• Say you have n friends, and some pairs of them don’t get along.

• How large a group of your friends can you invite to dinner if you

don’t want any interpersonal tensions?

• This is simply the largest independent set in the graph whose nodes

are your friends, with an edge between each conflicting pair.
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Independent Set: Example

A graph whose largest independent set has size 4 (1,4,5,6).3

3Image Credit: ”Algorithm Design” Jon Kleinberg and Eva Tardos - Addison Wesley

(2005)
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Independent Set: Runtime

• No efficient algorithm is known for the Independent Set problem,

and it is conjectured that no such algorithm exists.

• The solution we have is the obvious brute-force algorithm

• Once a solution is found, we can check if it is correct in polynomial

time

• This is a group of problems called NP-Complete
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Competitive Facility Location

• The Competitive Facility Location Problem is a strategic decision

problem where companies compete to place their facilities (e.g.,

stores, warehouses) in a market.

• The goal is to maximize market share, profit, or another

performance measure while considering the actions of competitors.

• Constraints to consider in location decisions:

• Proximity to consumers to minimize transportation costs.

• Legal and environmental regulations affecting feasible locations.

• Spatial strategies to counteract competitors’ locations.

• Solution

• No efficient solution,

• Not even an efficient way of check a solution

• Heuristic methods

• Approximation methods
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Conclusion

• In this lecture we discussed

• Stable Matching Problem

• A greedy algorithm as a solution

• Analysis of the proposed algorithm (less formal)

• Correctness

• Runtime complexity

• Next lecture

• No class on Monday

• Algorithm Analysis

• Read Chapter 2 of the textbook

• Lecture note will be provided as a reference
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Questions?
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