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The Problem



Originated in 1962 by David Gale and Lloyd Shapley

They wanted to implement a self-enforcing college admissions
process

This is also called Gale-Shapley Matching

National Resident Matching Program had been using a very similar
procedure
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we come up with a stable matching?
e What is stable?

e For every applicants a € A who is not scheduled to work for e € E,
at least one of the following is true
e e prefers every one of its accepted applicants to a; or
e a prefers her current situation over working for employer e.
e Conversely, a matching of applicants (a, e)and(a’, ') for
e,e’ € Eanda,a’ € A is unstable if both of the following hold
e e prefers a’ over a
e o’ prefers e over &’
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Example: Input 1

e Each man ranks all the women in order of preference.
e Each woman ranks all the men in order of preference.

e Each person uses all ranks from 1 to n, i.e., no ties, no incomplete
lists.

Men 1 2 3 4

Alex Callie Christina | Meredith | Miranda

Derek Meredith | Miranda | Christina Callie
Jackson || Meredith | Miranda | Christina Callie
Preston || Christina | Miranda Callie Meredith




Example: Input 2

Women 1 2 3 4
Callie Alex Derek Jackson | Preston
Christina || Derek | Preston | Jackson Alex

Meredith || Derek | Jackson | Preston Alex
Miranda Derek | Jackson Alex Preston




Example: Matching

c £ c c
s £ 8 x 9 S Alex Callie
o B B § ¥ & ¥ B
= £ £ 0O 9 g 9 ¢ _—
T £ O = < 0 S a Derek Christina
Y 9 =2 = Calli 112|134
allie Jackson Meredith
il S e PR T B Christina | 4 | 1| 3 | 2
Derek 413112 Meredith | 4 | 11 2 | 3 Preston Miranda
S CHRICH N R Miranda | 3 | 1 | 2 | 4
Preston | 3 | 1 | 4| 2

e Matching: each man is paired with < 1 woman and vice versa.

e Perfect matching: each man is paired with exactly one woman and

vice versa.

" Perfect”: only means one-to-one mapping, not that people are

happy with matches or its stable.




Other " matching”

(a) (b)

Alex Callie Alex Callie
Derek Christina Derek Christina
Jackson Meredith Jackson Meredith
Preston Miranda Preston Miranda
() (d)
Alex Callie Alex Callie
Derek Christina Derek Christina
Jackson Meredith Jackson Meredith

Preston Miranda Preston Miranda



Other " matching”

(@)  Matching, not perfect (b) Perfect matching
Alex Callie Alex Callie
Derek Christina Derek Christina
Jackson Meredith Jackson Meredith
Preston Miranda Preston Miranda
(c) Perfect matching (d) Not a matching
Alex Callie Alex Callie
Derek Christina Derek Christina
Jackson Meredith Jackson Meredith

Preston Miranda Preston Miranda



Our Matching

c £ c c
s £ 8 x 9 S Alex Callie
e B B § 5 § 5 8
H— g = © < (3] [ 9 PR
T £ O = < 0 S a Derek Christina
Y 9 =2 = Calli 112|134
allie i
Jackson Meredith
Alex |1]2]3]4 Christina | 4 | 1| 3 | 2
Derek 413112 Meredith | 4 | 11 2 | 3 Preston Miranda
Jackson | 4 | 3|1 ]2 Miranda | 3 | 1| 2 | 4
Preston | 3 | 1 | 4| 2

Are there problems with this matching?
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Our Matching

2 g s ~ & 8§ Alex Callie
o B @ & x 9@ x W
H = = © 2 [ i 9 ot
T £ O = < a0 =8 a Derek Christina
Y 9 =2 = Calli 112|314
allie Jackson Meredith
Alex |1]2]3]4 Christina | 4 | 1 | 3 | 2
Derek 41312 Meredith | 4 | 112 | 3 Preston Miranda
Jackson | 4 |3 |12 Miranda | 3 | 1 | 2 | 4
Preston | 3 | 1 | 4| 2

Are there problems with this matching?
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Our Matching

c £ © c c
£ 2 3 x 2 8 Alex Callie
e B B § 5 § 5 8
T £ 8 = < 0 S a Derek Christina
CRN Calli 112|314
allie .
Jackson Meredith
AN RN Christina | 4 | 1| 3 | 2
Derek | 4 |3 | 1|2 Meredith | 4 | 11 2 | 3 Preston Miranda
dedean || & 8 | 1 2 Miranda | 3 | 1 | 2 | 4
Preston | 3 | 1 | 4| 2

Are there problems with this matching?
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Our Matching

s ﬁ s . 5 § Alex Callie
o S § % x O ¥ B

L2 2 9 3 2 g ¢ ¢ Derek Christi

L B g = ere ristina
5633 e AR

A T3 2 Callie 11234 Jackson Meredith

ex Christina | 4 | 1| 3 |2 Preston Miranda
Derek | 4 |3 |12 Meredith | 4 | 1 | 2 |3
Jackson | 4 | 3 | 1|2 Miranda | 3 | 1 | 2 | 4

Preston | 3 | 1 |4 |2

Rogue couple: a man and a woman who are not matched but prefer
each other to their current partners.
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Stable Matching

2 E s ~ & 8 Alex Callie
e B 9 £ 5 £ % 8
E é g § = 8 s & Derek Christina
Callie 11234 Jackson Meredith
GRS el Christina | 4 | 1| 3 | 2
Derek 4 13|12 Meredith | 4 | 1| 2 | 3 Preston Miranda
drEEEn | & 8 [ 12 Miranda | 3 | 1 | 2 | 4
Preston | 3 | 1 | 4| 2

Stable matching: A perfect matching without any rogue couples.
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Stable Matching

2 E s ~ & 8 Alex Callie
2 5 3 5 5 5 % 8
E é g § = é" s & Derek Christina
Callie 11234 Jackson Meredith
I;"ex 11234 Christina | 4 | 1| 3 | 2
erek 4 13|12 Meredith | 4 | 1| 2 | 3 Preston Miranda
drEEEn | & 8 [ 12 Miranda | 3 | 1 | 2 | 4
Preston | 3 | 1 | 4| 2

Stable matching: A perfect matching without any rogue couples.

1. Given preferences for every woman and every man, does a
stable matching exist?

2. If it does, can we compute it? How fast?

14



The Algorithm



e Given of preferences among employers (E) and applicants (A), can
we come up with a stable matching?
e We will start with a simple version of the problem

e Let's assume there are only two men and two women
e What are the possible permutations of preferences?
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e Given of preferences among employers (E) and applicants (A), can
we come up with a stable matching?

e We will start with a simple version of the problem

e Let's assume there are only two men and two women
e What are the possible permutations of preferences?
o Mi[Wi, Wa]; Mi[Wa, Wi
Ma[Wi, Wal; Ma[Wa, Wi]
o Wi[My, Ma]; Wi [Ma, Mi]
Wa[My, My]; Wa[Ma, My ]

15



Possible Matching

Example Stable Matching

W1l W2
M1 1 2
M2 | 1 2
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W1l W2 M1 M2
M1 1 2 W1 1 2
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Example Stable Matching
W1 W2 M1 M2 mi wil
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Possible Matching

Example Stable Matching
W1 W2 M1 M2 mi wil
M1 | 1 2 Wi | 1 2 7<
M2 | 1 2 W2 | 1 2 m?2 w2
W1 W2 M1 M2 ml——m—-swil
M1 | 1 2 W1 | 2 1
M2 | 1 | 2 w2 | 2 | 1 m2<«——w2
W1 W2 M1 M2 mle——m—wl
M1 | 1 2 W1 | 2 1
M2 | 2 | 1 w2 | 1 | 2 m2=——>w2
16




Challenge

Can you create an example that does not have a stable matching?
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GS Algorithm

Initially all men and women are free
while there is a man m who is free and hasn’t proposed to ev
Choose such a man m
m proposes to the highest-ranked woman in m’s preference
if w is free then
(m, w) become engaged -> Add (m,w) from S
else if w is engaged to m’ but prefers m to m’ then
m’ becomes free -> Delete (m’,w) from S
(m, w) become engaged -> Add (m,w) from S
else
m remains free
return the set S of engaged pairs

18



The Algorithm

e Each man proposes to each woman, in decreasing order of
preference.
e Woman accepts if she is free or prefers new prospect to

current fiance.

What can go wrong?

e Does the algorithm even terminate?

e If it does, how long does the algorithm take to run?

e If it does, is S a perfect matching? A stable matching ?




Gale-Shapley algorithm computes a matching, i.e., each woman

paired with at most one man and vice versa.

Man's status: Can alternate between being free and being engaged.
e Woman's status: Remains engaged after first proposal.
e Ranking of a man’s partner: Remains the same or goes down.

e Ranking of a woman's partner: Can never go down.

Can we prove that that GS algorithms produces a terminates with
stable matching

20



Proof: Algorithm Terminates/Runtime

e Is there some quantity that we can use the measure the progress of
the algorithm in each iteration?
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Proof: Algorithm Terminates/Runtime

e Is there some quantity that we can use the measure the progress of
the algorithm in each iteration?
e Number of free men?
e Number of free women?
e No, since both can remain unchanged in an iteration.
e Number of proposals made after k iterations?
e Must increase by one in each iteration.
e How many total proposals can be made?

.I72

e The algorithm must terminate in n? iterations

21



Correctness Proof: Matching Computed is Perfect

e Suppose the set S of pairs returned by the GS algorithm is not
perfect.

e S is a matching. Therefore, there must be at least one free man m.
e m has proposed to all the women (since algorithm terminated).

e Therefore, each woman must be engaged (since she remains
engaged after the first proposal to her).

e Therefore, all men must be engaged, contradicting the assumption
that m is free.

e Proof that matching is perfect relies on

e proof that the algorithm terminated and
e the very specific termination condition.

22



Correctness Proof: Matching Computed is Stable

Perfect matching S returned by algorithm

QPOQY
olelelele
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Correctness Proof: Matching Computed is Stable

e Not stable: m; paired with wy but prefers ws;

e w, paired with my but prefers my

()
O

O
O

OQ&@ O
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Correctness Proof: Matching Computed is Stable

my proposed to wy before proposing to wy

QOAOE
OOGO®O
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Correctness Proof: Matching Computed is Stable

Remember: What happened when my proposed to w,?

26



Correctness Proof: Matching Computed is Stable

Case 1: w, rejected wy because she preferred current partner ms?

27



Correctness Proof: Matching Computed is Stable

Case 1: At termination w, must prefer her final partner m, to ms.
Contradicts consequence of instability: my prefers m; to my?

QOO
OOG®O®O
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Correctness Proof: Matching Computed is Stable

Case 2: w, accepted my because she had no partner or preferred m; to

current partner m37?

29



Correctness Proof: Matching Computed is Stable

Case 2: By instability, we know w, prefers m; to m,. But at
termination, ws is matched with my, which contradicts property that a
woman switches only to a better match.

QOO ®E
OOG®®O

30



Correctness Proof: In Words

e Suppose S is not stable,
e there are two pairs (my, wi) and (m2, wz) in S such that my prefers
w> to wy and ws prefers my to ma.
e m; must have proposed to w, before wy
e At that stage wo, must have rejected my
e otherwise, the algorithm would pair m; and w»,
e would prevent the pairing of m; and w, in a later iteration of the
algorithm.
e When w; rejected my, she must have been paired with some man,
say m3, whom she prefers to m.
e Since my is paired with ws at termination, w, must prefer to m, to
ms3 or my = ms,

e contradicts our conclusion that w», prefers m1l to mo.

31



Variants: Hospitals and residents

e Multiple residents

Each hospital can take multiple residents.
Modification of Gale-Shapley algorithm works.
Some residents may not be matched.

Some hospitals may not fill quota.
e Hospitals and residents with couples

e Each hospital can take multiple residents.

e A couple must be assigned together, either to the same hospital or
to a specific pair of hospitals chosen by the couple

e NP-Complete

32



e Stable roommates

e There is only one pool of people
e Stable matching may not exist.
e Irving's algorithm; more complex than Gale-Shapley.

e Complex preferences

e Preferences may be incomplete or have ties or people may lie.
e Several variants are NP-hard, even to approximate.

33



A Few More Problems




Interval Scheduling: Idea

Say you have a resource to be scheduled for

e It may be a lecture room, a supercomputer, or an electron
microscope

Many people request to use the resource for periods of time.
e A request takes the form:

e Can | reserve the resource starting at time s, until time f ?

We will assume that the resource can be used by at most one person
at a time.

e A scheduler wants to accept a subset of these requests, rejecting all
others, so that the accepted requests do not overlap in time.

The goal is to maximize the number of requests accepted.

34



Interval Scheduling: Formally

e There will be n requests labeled 1,...,n
e Each request i specifying a start time s; and a finish time f;
e We have s; < f; for all i

e Two requests / and j are compatible if the requested intervals do not
overlap:

e either request 7 is for an earlier time interval than request j(f; < s;),
e or request i is for a later time than request j(f;s;).

e Generally that a subset A of requests is compatible if all pairs of
requests i,j € A, i # j are compatible.

e The goal is to select a compatible subset of requests of maximum
possible size.

e Interval Scheduling has a Greedy Algorithm Solution

35



Interval Scheduling: Visually

h
o 1t 2 3 4 5 6 7 8 9 10 1

Time

Visualization of Interval Scheduling !

Ylmage Credit: https:
//stumash.github.io/Algorithm_Notes/greedy/intervals/intervals.html
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Weighted Interval Scheduling

e A modification to Interval Scheduling Problem

e Suppose more generally that each request interval i has an
associated value, or weight, v; > 0

e We could picture this as the amount of money we will make from the
i*h individual if we schedule his or her request.

e Our goal will be to find a compatible subset of intervals of maximum
total value.

e The case in which v; =1 for each i is simply the basic Interval
Scheduling Problem

e The appearance of arbitrary values changes the nature of the
maximization problem quite a bit.

37



Weighted Interval Scheduling

e Consider, for example, that if v; exceeds the sum of all other v;,
then the optimal solution must include interval 1 regardless of the
configuration of the full set of intervals.

e So any algorithm for this problem must be very sensitive to the
values, and yet degenerate to a method for solving (unweighted)
interval scheduling when all the values are equal to 1.

e There appears to be no simple greedy rule that walks through the
intervals one at a time, making the correct decision in the presence
of arbitrary values.

e Instead, we employ a technique, dynamic programming

e |t builds up the optimal value over all possible solutions in a
compact, tabular way that leads to a very efficient algorithm.

38



Bipartite Matching

e A bipartite graph is a graph whose vertices can be divided into two
disjoint sets U and V such that every edge connects a vertex in U to
one in V.

e Bipartite matching involves finding a maximum matching, which is
the largest subset of edges such that no two edges share a common
vertex.

e Used in job assignments, network flows, and resource allocation.

39



Bipartite Matching

A bipartite graph 2

?Image Credit: " Algorithm Design” Jon Kleinberg and Eva Tardos - Addison Wesley
(2005)

40



Bipartite Matching

e Maximum matching is the largest set of edges with no shared
vertices.
e Perfect matching a matching that covers every vertex in the graph.
e Augmenting Path a path that can increase the size of the current
matching.
e Algorithms for Bipartite Matching
e Hungarian Algorithm: Efficient for finding maximum matching in
bipartite graphs.
e Hopcroft-Karp Algorithm: Improves performance for large bipartite
graphs.
e Interval scheduling can be transformed into a bipartite matching
problem by representing intervals as nodes in a bipartite graph.

41



Independent Set: The Problem

e Given a graph G = (V, E), we say a set of nodes S V is independent
if no two nodes in S are joined by an edge.

e The Independent Set Problem is, then, the following: Given G, find
an independent set that is as large as possible.

e The Independent Set Problem encodes any situation in which you
are trying to choose from among a collection of objects and there
are pairwise conflicts among some of the objects.

e Say you have n friends, and some pairs of them don’t get along.

e How large a group of your friends can you invite to dinner if you
don't want any interpersonal tensions?

e This is simply the largest independent set in the graph whose nodes
are your friends, with an edge between each conflicting pair.

42



Independent Set: Example

A graph whose largest independent set has size 4 (1,4,5,6).3

3Image Credit: " Algorithm Design” Jon Kleinberg and Eva Tardos - Addison Wesley
(2005)
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Independent Set: Runtime

No efficient algorithm is known for the Independent Set problem,
and it is conjectured that no such algorithm exists.

The solution we have is the obvious brute-force algorithm

Once a solution is found, we can check if it is correct in polynomial

time

This is a group of problems called NP-Complete
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y Location

The Competitive Facility Location Problem is a strategic decision
problem where companies compete to place their facilities (e.g.,
stores, warehouses) in a market.

The goal is to maximize market share, profit, or another
performance measure while considering the actions of competitors.
Constraints to consider in location decisions:

e Proximity to consumers to minimize transportation costs.
e Legal and environmental regulations affecting feasible locations.
e Spatial strategies to counteract competitors’ locations.

Solution

e No efficient solution,

e Not even an efficient way of check a solution
e Heuristic methods

e Approximation methods
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Conclusion

e In this lecture we discussed

Stable Matching Problem
A greedy algorithm as a solution

Analysis of the proposed algorithm (less formal)
Correctness

Runtime complexity
o Next lecture

e No class on Monday

Algorithm Analysis
Read Chapter 2 of the textbook
Lecture note will be provided as a reference
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Questions?
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