Chapter 2

Algorithm Analysis

2.1 Analysis of Algorithm

2.1.1 Definition

The analysis of algorithms is the determination of the amount of resources
(such as time and storage) necessary to execute them. Most algorithms
are designed to work with inputs of arbitrary length. Usually, the efficiency
or running time of an algorithm is stated as a function relating the input
length to the number of steps (time complexity) or storage locations (space
complexity).

We are often concerned about computational time as resource require-
ment but sometime we are also concerned about memory, communication
bandwidth, and other costs are considered. But for this course we will al-
ways assume the resource we are most concerned is the computational time,
hence, all our analysis is going to be in relation to that. When we analyze
multiple viable candidates, we will be able to identify which are the most
efficient once and which are not.

2.1.2 Model of Computation

Time efficiency estimates depend on what we define to be a step. For the
analysis to correspond usefully to the actual execution time, the time required
to perform a step must be guaranteed to be bound above by a constant. One
must be careful here; for instance, some analyses count an addition of two
numbers as one step. This assumption may not be warranted in certain
contexts. For example, if the numbers involved in a computation may be
arbitrarily large, the time required by a single addition can no longer be
assumed to be constant.

37

38 CHAPTER 2. ALGORITHM ANALYSIS

Two cost models are generally used:

e The uniform cost model, also called uniform-cost measurement, as-
signs a constant cost to every machine operation, regardless of the size
of the numbers involved

e The logarithmic cost model, also called logarithmic-cost measure-
ment, assigns a cost to every machine operation proportional to the
number of bits involved

The later is more cumbersome to use, so it’s only employed when necessary,
for example in the analysis of arbitrary-precision arithmetic algorithms, like
those used in cryptography. Models should also set standards on other pa-
rameters such as number of processors and memory access pattern and time.
Before we can analyze an algorithm we must have a model of the implemen-
tation technology that we will use.

Random Access Machine Model

For this course we use we assume a generic once processor, random access
machine (RAM) model of computation. In the RAM model instructions
are executed once after another with no concurrent operations.

Strictly speaking we should precisely define the instructions of the RAM
model and their cost, but doing so would be tedious and offer little insight
into algorithm design and analysis. Hence, we make assumptions about the
instructions and leave out listing the available instructions and their cost
explicitly. We should not abuse this model, though, by assuming instruction
that would not realistically be available in real computers such as an instruc-
tion to sort. Hence, RAM model has a handful of instructions on arithmetic
(add, subtract, multiply, divide, remainder, floor, and ceiling), data move-
ment (load, store, copy), and control (conditional and unconditional branch,
subroutine call and return).

The data types in RAM model are integer and floating point. Some
real computers sometimes have more instructions than those defined here
and we consider these to be gray area for the analysis. For example z¥ is a
multiple instruction operation but when x = 2 it can be done with a single
instruction which is shifting. Furthermore, in real computer there exists a
multi-level memory hierarchy (cache, primary memory and virtual memory),
which we do not consider in the RAM model.

2.1. ANALYSIS OF ALGORITHM 39

External Memory Model

Most of the time when we analyze algorithms we assume Random Access
Machine (RAM) as our model of computations. You are perhaps familiar
with the complexities of many algorithms in internal memory. For example,
it is well-known that N numbers can be sorted with O(N log N) time in the
RAM model. What this statement says exactly is that, there is an algorithm
able to solve the sorting problem by performing O(N log N) basic operations.
In particular, each basic operation either performs some ”standard” CPU
work (e.g., +,,,/, comparison, taking the AND/OR/XOR of two words,etc.)
or accesses a memory location.

Many applications in practice need to deal with data sets that are too
large to fit in memory. While it is true that the memory capacity of a
computer has been increasing rapidly, data set sizes have exploded at an even
greater pace, such that it is increasingly unrealistic to hope that someday we
could run all the applications entirely in memory. In reality, data still need to
be stored in an external device, typically, a hard disk. An algorithm in such
environments would need to perform many disk I/Os to move data between
the memory and the disk. Since an I/O is rather expensive (at the order of
1-10 milliseconds), the overall execution cost may be far dominated by the

I/O overhead.

This phenomenon has triggered extensive research in the past three decades
on algorithms in the external memory (EM) model, which was proposed in
1988, and has been very successful in capturing the characteristics of 1/0-
bound algorithms. A computer of this model is equipped with a memory of
M words, and a disk of an unbounded size. The disk has been formatted
into disjoint blocks , each of which has the length of B words. An 1/0O either
brings a block of data from the disk to the memory, or conversely writes
B words in the memory to a disk block. The space complexity of a data
structure or an algorithm is measured as the number of disk blocks occupied,
while the time complexity is measured as the number of I/Os performed.
CPU calculation can be done only on the data that currently reside in the
memory, but any such calculation is charged with no cost. Accessing any
data in the memory is also for free. The value of M is assumed to be at least
2 B, i.e., the memory can be as small as just 2 blocks. However, it is often
acceptable to assume M B 2, which is known as the tall cache assumption.
By fitting in some typical values of B in practice, you can convince yourself
that a memory with B 2 words is available in almost any reasonable computer
nowadays. For a data set of N elements 1, the minimum number of blocks
required to store all the elements is (N/B). Therefore, linear cost should be
understood as O(N/B), as opposed to O(N). 2

40 CHAPTER 2. ALGORITHM ANALYSIS

Cache Oblivious Model

The cache-oblivious model is an abstract machine (i.e. a theoretical model
of computation). It is similar to the RAM machine model which replaces the
Turing machine’s infinite tape with an infinite array. Each location within
the array can be accessed in time, similar to the Random access memory
on a real computer. Unlike the RAM machine model, it also introduces a
cache: a second level of storage between the RAM and the CPU. The other
differences between the two models are listed below. In the cache-oblivious
model:

e Memory is broken into lines of L words each

e A load or a store between main memory and a CPU register may now
be serviced from the cache. If a load or a store cannot be serviced from
the cache, it is called a cache miss.

e A cache miss results in one line being loaded from main memory into
the cache. Namely, if the CPU tries to access word w and b is the
line containing w, then bis loaded into the cache. If the cache was
previously full, then a line will be evicted as well (see replacement
policy below).

e The cache holds Z words, where Z = wL?. This is also known as the
tall cache assumption.

e The cache is fully associative: each line can be loaded into any location
in the cache.

e The replacement policy is optimal. In other words, the cache is assumed
to be given the entire sequence of memory accesses during algorithm
execution. If it needs to evict a line at time, it will look into its sequence
of future requests and evict the line that is accessed furthest in the
future. This can be emulated in practice with the Least Recently Used
policy, which is shown to be within a small constant factor of the offline
optimal replacement strategy.

To measure the complexity of an algorithm that executes within the cache-
oblivious model, we can measure the familiar (running time) work complexity
W (n). However, we can also measure the cache complexity, Q(n, L, Z), the
number of cache misses that the algorithm will experience.

The goal for creating a good cache-oblivious algorithm is to match the
work complexity of some optimal RAM model algorithm while minimizing
Q(n, L, Z). Furthermore, unlike the external-memory model, which shares

2.1. ANALYSIS OF ALGORITHM 41

many of the listed features, we would like our algorithm to be independent
of cache parameters (L and Z)). The benefit of such an algorithm is that
what is efficient on a cache-oblivious machine is likely to be efficient across
many real machines without fine tuning for particular real machine parame-
ters. Researchers showed that for many problems, an optimal cache-oblivious
algorithm will also be optimal for a machine with more than two memory
hierarchy levels.

2.1.3 Efficiency

Different algorithms can be devised to solve a single problem. Each of these
algorithms will differ dramatically in their efficiency. Efficiency is the com-
parison of what is actually produced or performed with what can be achieved
with the same consumption of resources (money, time, labor, etc.). This dif-
ference in efficiency is even much more significant than the hardware and
software the solutions are implemented on.

For example, take two sorting algorithms insertion sort and merge sort.
Insertion sort takes C; N3 time for an input size of N while merge sort takes
C5N log N time where C and co are constants independent of each other
and N. It can be seen from Figure that after a certain input size N
N =~ 60n (n = 60) merge sort clearly outperforms (i.e., is much more
efficient /runs faster than) insertions sort with ¢} = 10 =10 and Cy = 100.
The detailed analysis is presented in Table

2.1.4 Another Reason to Analyze Algorithms

Even if speed and cost were not an issue we still have to study algorithms
to show they actually terminate and do so with the right answer (i.e., proof
their correctness). In reality, though, both speed and cost associated with
algorithms is an issue and we want to study it.

2.1.5 Example: Analysis of Insertion Sort

To recap, analyzing algorithm refers to figuring out the amount of resource
required to execute it. Analysis of algorithm in relation to its time com-
plexity, hence, refers to the time it takes to execute the algorithm. Further
since we assume all elementary operations (i.e., those operations defined by
the computational model) as to take a a single unit of time, counting the
number of these operations performed by the algorithm will give as the total
time required to execute the algorithm.

42 CHAPTER 2. ALGORITHM ANALYSIS
N | Insertion Sort | Merge Sort | Efficient Algorithm
2 40 400 Insertion
10 1000 6643.85619 Insertion
15 2250 11720.6718 Insertion
20 4000 17287.7124 Insertion
25 6250 23219.2809 Insertion
30 9000 29441.3436 Insertion
35 12250 35904.9811 Insertion
40 16000 42575.4248 Insertion
45 20250 49426.6779 Insertion
50 25000 56438.5619 Insertion
55 30250 63594.9568 Insertion
60 36000 70882.6871 Insertion
65 42250 78290.7816 Insertion
70 49000 85809.9622 Insertion
75 56250 93432.2804 Insertion
80 64000 101150.85 Insertion
85 72250 108959.646 Insertion
90 81000 116853.356 Insertion
95 90250 124827.257 Insertion
100 100000 132877.124 Insertion
110 121000 149189.914 Insertion
120 144000 165765.374 Insertion
130 169000 182581.563 Insertion
140 196000 199619.924 Insertion
150 225000 216864.561 Merge
160 256000 234301.699 Merge
170 289000 251919.292 Merge
180 324000 269706.711 Merge
190 361000 287654.513 Merge

Table 2.1: Running time for insertion sort and merge sort with ¢

10 and cs

200

2.1. ANALYSIS OF ALGORITHM 43

‘O Insertion Sort O Merge Sort

400000

300000

200000

100000

56 65 75 85 95 110 130 150 170 190

Figure 2.1: Asymptotic Comparison of running times of insertion sort and
merge sort

procedure insertionSort(A : list of sortable items)
for j = 2 to length [A]

do key = A[j]
// Insert A[j] into the sorted sequence A[l... j—1]
i= j 1

while i>0 and A[i]>key
do A[T + 1] A [i]
i=1 1

end while

A[i+1] = key
end for
end procedure

To illustrate this process in action, in this section, we will analyze the
time complexity of insertion sort with an implementation presented above.
The time taken by the insertion sort procedure depends on

44 CHAPTER 2. ALGORITHM ANALYSIS

e Input size: sorting a thousand numbers takes longer than ten

e Input sort status: sorting an input already nearly sorted would be
faster than a reversely sorted input.

In general the running time of a program depends on the input size.
Hence we need to describe running time as a function of input size.The notion
of input size depends on the problem being studied. For many problems it
is the number of items in the input. For others such as multiplying integers
the best measure is the total number of bits and in other cases such as graph
problems the input will described by more than one number (i.e., number of
vertices and edges). We shall indicate which input size measure is being used
with each problem we study.

The running time of an algorithm on a particular input is the number of
primitive operations or steps executed. It is convenient to define the notion
of steps to make it machine-independent. It take a constant time to execute
each line of our pseudocode but one line may take a different amount of time
that the other. Let say line i of the pseudocode takes ci to execute and the
inner while loop tests ¢; times for the j item.

INSERTIO-SORT (A) Cost Times

1 forj <2 tolength [A] Cy N

2 do key « A[j] C N-1

3 // Insert A[j] into the sorted sequence A[1... j-1] 0 N-1

q i<j-1 Cy N-1

5 while i > 0 and A[i] > key Cs S 4
nj:z

6 do A[l + 1] < A[i] Ce -1
=

jel-1 < 11
8 Ali+1] « key Cs N-1

Figure 2.2: Running Time Analysis of Insertion Sort

Based on Figure the total running time of the algorithm is the sum
of running times of each statement executed

T(n)=Cin + Caln—1)+Cin—1) + 5> 1, +
=2

(2.1)

n n

CGZ(tj_l) + C7Z(tj — 1) + Cs(ﬂ—l)

Jj=2 Jj=2

As stated in previously the running time of a program depends on the
input size and in this case the level of sorting it already is in. For insertion

2.1. ANALYSIS OF ALGORITHM 45

sort the best case is when the input is already sorted in which case for each
Jj =2,3..m Ali] < key in the first iteration of the while loop (i = j — 1)
hence t; = 1 leading to the following equation.

Tn)=Cmn + Ca(n—1)+Cy(n—1) + Cs(n—1) + Cs(n—1) (2.2)

Tn)=(Cr + Co + Cy + C5 + Cg)n—(Cy + Cy + C5 + Cs) (2.3)

If the array was in reverse order the algorithm will face its worst case
results since we must compare each A[j] with all the elements in the sorted
portion of the array

Z":j:n(nTW_l (2.4)

n

Zj_lzw (2.5)

, 2
Jj=2
n(n—1)
T(n)=Cin + Co(n = 1) + Ci(n = 1) + G(—=F— = 1)+
(2.6)
n(n —1 n(n—1
C C C C
T(n)=(3 + 5 + 5n° + (CL + G+ Ci + 3> =
2.7)
e (
4 S+ Cn = (Co + G+ G5 + Cy)

So we can express the worst case running time as an? + bn + c if we
replace the coefficients in the above equation with constants a, b and ¢. We
used some simplifying abstractions to ease our analysis by ignoring actual
statement cost and even the abstracts costs C;. We normally even further
simplify this by only considering rate of growth or order of growth
instead of the actual running time. We shall do this because what we really
want to know is whom our algorithm performance compared to others for
large input sizes.

We therefore only consider the leading term an? since the lower order
terms (i.e., bn and ¢) will have relatively insignificant for the large values of
n compared to the first once. We even ignore the coefficient a due to similar
reasons as to why we ignored the other terms to be left with n? which we
consider as our order of growth. We call this the theta notation and it is
presented as ©(n?)

46 CHAPTER 2. ALGORITHM ANALYSIS

2.2 Correctness of An Algorithm

2.2.1 Introduction

After designing algorithms in addition to analyzing the resource requirement
one should proof its correctness. Proving the correctness means that showing
that the algorithm halts and halts with correct answer for all valid inputs.
In this course the primary technique we will use for proving correctness of
an algorithm is mathematical induction.

Mathematical Induction is a mathematical proof technique used to prove
a given statement about any well-ordered set. Most commonly, it is used
to establish statements for the set of all natural numbers. Mathematical in-
duction is a form of direct proof, usually done in two steps. When trying to
prove a given statement for a set of natural numbers, the first step, known
as the base case, is to prove the given statement for the first natural num-
ber. The second step, known as the inductive step, is to prove that, if the
statement is assumed to be true for any one natural number, then it must be
true for the next natural number as well. Having proved these two steps, the
rule of inference establishes the statement to be true for all natural numbers.
In common terminology, using the stated approach is refers to as using the
Principle of Mathematical Induction.

in addition to these two steps in the conventional mathematical induction,
while proving correctness of algorithm we add a third step to check the
termination of the algorithm.

2.2.2 Loop Invariant

A loop invariant is a property of a program loop that is true before (and after)
each iteration. It is a logical assertion, sometimes checked within the ode by
an assertion call. Knowing its invariant(s) is essential in understanding the
effect of a loop. What is more, it is what we will use to prove in the base
case and the inductive step.

In the pseudocode of insertion sort presented earlier, j indicates the cur-
rent card being inserted. At the beginning of the outer loop (i.e., for loop),
which is indexed by 7, the sub array containing elements A[l...j — 1] consists
of the currently sorted hand and elements A[j + 1...n] correspond to the pile
of cards still on the table. In fact elements A[l...j — 1] are the elements
originally positions 1 through 7 — 1 but now in a sorted order.

We state these properties formally as loop tnvariants

At the start of each iteration of the for loop of lines 2-8, the
subarray A[l...j —1] consists of the elements originally in A[1..j —

2.2. CORRECTNESS OF AN ALGORITHM 47

1] but in a sorted order

We use these loop invariants to help us understand why an algorithm is
correct.

2.2.3 Correctness Proof

We must show three things about a loop invariant to proof an algorithms
correctness

e Initialization: It is true prior to the first iteration of the loop

e Maintenance: If it is true before an iteration of the loop, it remains
true before the next iteration

e Termination: when the loop terminates, the invariant gives us a useful
property that helps show that the algorithm is correct

Notice the similarity of this approach to mathematical induction in which
you proof the base case and then the inductive step. Here showing the
loop invariant holds for the first iteration is the base case and showing that
the invariant holds from iteration to iteration is like the inductive case.

One important difference from mathematical induction is the third step
in which we show the correctness for the termination case. In mathematical
induction we show that the inductive step holds infinitely, here we stop the
induction when the loop terminates.

2.2.4 Example: Insertion Sort

procedure insertionSort(A : list of sortable items)
for j = 2 to length [A]
do key = A[j]
// Insert A[j] into the sorted sequence A[l... j—1]
=] 1

while i>0 and A[i]>key
do A[T + 1] A [i]
i=i 1

end while

Ali+1] = key
end for
end procedure

48 CHAPTER 2. ALGORITHM ANALYSIS

Using these properties we will show the correctness of insertion sort algo-
rithm.
e Loop Invariant: At the j iteration the elements [1...j — 1] are sorted
relative to themselves.

e Initialization: We start by showing that the loop invariant holds be-
fore the first loop iteration when j = 2. The subarray [1...7 — 1],
therefore, consists of just the single element A[1], which in fact it the
original element A[1]. This array is sorted (trivial)

e Maintenance: In the algorithm the for loop works by moving A[j —
1], A[j—2], A[j—3] and so on by one position to the right until the right
position for A[j] is found at which point the value of A[j] is inserted.
More formally, though, it is required to show the loop invariant of the
inner loop as well. Here, however, we will not go into such detail for
the time being

e Termination: The outer loop end when j exceeds n, i.e., when j =
n + 1 substituting n + 1 for j in the wording of loop invariant we have
the subarrayA[l...n] consists of the elements originally in A[l..n] but
in a sorted order. But the subarray A[l...n| is the entire array which
means the entire array is sorted

2.2.5 Example: Bubble Sort

procedure bubbleSort (A)
for i = n—1 down to 0 do
for j =0 to i do
if A[j+1] < A[j] then

tmp = A[j+1]
Alj+1] = Alj]
Alj] = tmp
end if
end for
end for

end procedure

Using mathematical induction we will show the correctness of bubble sort
algorithm.
e Loop Invariant: At the i*" iteration the last i elements [n — i,n]
are sorted relative to themselves and are all greater than all elements
in[l,..n—i—1].

2.2. CORRECTNESS OF AN ALGORITHM 49

e Initialization: We start by showing that the loop invariant holds be-

fore the first loop iteration when @ = n — 1. The subarray [n — i...n],
therefore, consists of no element as n —n—1 = n, and A[n] is empty
as we are using 0 based index. This array is sorted (trivial)

Maintenance: In the algorithm the inner for loop bubbles the max-
imum element from A[0], A[1], A[2], ... Ali] to the end (i.e., the i*"
position. Which means if we assume the elements ¢ to n are sorted
and they are all greater than all elements 0 — i — 1 in the " iter-
ation, then on the so on (i + 1) iteration the biggest element from
Al0], A[1], A[2], ... Ali — lJwill be on (i — 1) location making the
lats (i + 1) sorted hence maintaining the loop invariant.

Termination: The outer loop end when ¢ becomes 0 hence from the
loop invariant we have when the loop terminates the last n —0 elements
are sorted which means the entire list is sorted.

2.2.6 Exercises

1.

Re-write the pseudocode of insertion sort procedure to sort into non-
increasing instead of non-decreasing order

. Analyze the running time of bubble sort algorithm presented in the

previous chapter

Prove the correctness of selection sort algorithm presented in the pre-
vious chapter using mathematical induction.

. Analyze the running time of selection sort algorithm presented in the

previous chapter

. Given the searching problem defined in previous class

(a) Write the pesudocode for linear search, which scans through the
sequence, looking for the item.

(b) Using loop invariant, prove that your algorithms are correct

(¢) Write the pesudocode for binary search, which uses the divide and
conquer technique.

Consider the problem of adding two n-bit binary integers, stored in
two n-element arrays A and B. The sum of the two integers should be
stored in binary form in an (n + 1) element array C'. stat the problem
formally and write pseudocode for adding the two integers

