Chapter 1

Introduction

1.1 What are Algorithms

An algorithm is an unambiguous specification of how to solve a class of
problems. It is any well-defined computational procedure that takes some
value or set of values as input and provides some value or set of values as
output. Put in other words, an algorithm is a sequence of computational
steps that transform an input to an output, or, a tool for solving well-specified
computational problems.

A computer program can be viewed as an elaborate algorithm trying
to explain the steps to be taken by a computer to solve a problem. The
audience in computer program is a computer, hence, the algorithm is finally
expressed in a language that the computer understands. We will see later on,
however, that there are other languages’ we could use in stating an algorithm
depending on the audience we are trying to communicate with.

The concept of algorithm has existed for centuries; however, a partial for-
malization of what would become the modern algorithm began with attempts
to solve the Entscheidungsproblem (the ”decision problem”) posed by David
Hilbert in 1928. Subsequent formalizations were framed as attempts to define
"effective calculability” or ”effective method”; those formalizations included
the GdelHerbrandKleene recursive functions of 1930, 1934 and 1935, Alonzo
Church’s lambda calculus of 1936, Emil Post’s ” Formulation 17 of 1936, and
Alan Turing’s Turing machines of 19367 and 1939. Giving a formal definition
of algorithms, corresponding to the intuitive notion, remains a challenging
problem.

The problem statement/ statement of a problem specifies the de-
sired input /output relationship. Algorithms, therefore, describes the specifics
for achieving this IO relationship. Two examples are presented here to illus-

10 CHAPTER 1. INTRODUCTION

trate this concept of problem statement for which students are assumed to
know at least one solution algorithm.

Example 1: Searching problem

Input: A sequence of n numbers {aj,as,as...a,} and a number b to
search for

Output: A index % if a; = b or -1 if there exists no such 4 where
0<i1<n

Example 2: Sorting problem

Input: A sequence of n numbers {ay, as, as...a,}

Output: A permutation (reordering) {a;, a;;, @i, ..., am } of the input se-
quence such that {a; < a; < a; < ... < ap}

An example input for the searching problem could be {93, 29, 40, 14, 26, 84}
and 14, accordingly the output of a searching algorithm will be 3 (with a zero
based indexing scheme). An example input sequence for the sorting problem
could be 93, 29, 40, 14, 26, 84 and the output/result of a sorting algorithm
for this input will be 14, 26, 29, 40, 84, 93. Both of these inputs are called
instances of their respective problems.

In general an instance of a problem consists of the input (satisfying what-
ever constraints problem statement imposes). An algorithm is said to be cor-
rect if and only if, for every input instance, it halts with the correct output.
We say that a correct algorithm solves the given computational problem.

Incorrect algorithms either do not halt at all or will halt with the wrong
output. Incorrect algorithms might be at times useful if we can control the
error rate. E.g., A heuristic is a technique designed for solving a problem
more quickly when classic methods are too slow, or for finding an approximate
solution when classic methods fail to find any exact solution. This is achieved
by trading optimal, completeness, accuracy, or precision for speed. In a way,
it can be considered a shortcut.

The notion of Algorithm its relationship with the notion of functions is
often times confused and many use one to mean the other. However, the
two notions are completely different. Function is a relation between a set of
inputs and a set of permissible outputs with the property that each input is
related to exactly one output. An example is the function that relates each
real number z to its square x5. The output of a function f corresponding to
an input z is denoted by f(z) (read ”f of x”). In this example, if the input
is —3, then the output is 9, and we may write f(—3) = 9. Likewise, if the
input is 3, then the output is also 9, and we may write f(3) = 9. (The
same output may be produced by more than one input, but each input gives
only one output.) The input variable(s) are sometimes referred to as the

1.2. CHARACTERISTICS OF ALGORITHMS 11

argument(s) of the function.

Algorithm on the other hand refers to the steps taken to produce the
desired output. Hence, there could be more than one algorithm per function.
In our previous example f(z), which takes in a number as an input and pro-
duces the squared value of the number as an output could be implemented
in a number of ways (i.e., algorithms). One possible algorithm is to add the
input value z , z times and return the absolute value of the sum found. An-
other possible implementation is to multiply the input value z by itself once.
Both of this algorithms are correct(we will define what a correct algorithm
is later on), however one could be more efficient than the other. One should
note that both of these assertion are valid and testable if we define the a
certain computational model (discussed later)

1.2 Characteristics of Algorithms

e Finiteness: An algorithm must always terminate after a finite number
of steps.

e Definiteness/Precision: Each step of an algorithm must be precisely
defined; the actions to be carried out must be rigorously and unam-
biguously specified for each case.

e Input An algorithm has zero or more inputs, i.e, quantities which are
given to it initially before the algorithm begins.

e Output: An algorithm has one or more outputs i.e, quantities which
have a specified relation to the inputs.

e Effectivenes: An algorithm is also generally expected to be effective.
This means that all of the operations to be performed in the algorithm
must be sufficiently basic that they can in principle be done exactly
and in a finite length of time.

e Uniqueness: Results of each step are uniquely defined and only de-
pend on the input and the result of the preceding steps.

e Generality: The algorithm applies to a set of inputs

12 CHAPTER 1. INTRODUCTION

1.3 Expression of Algorithms

Flowcharts

A flowchart is a type of diagram that represents an algorithm, work-flow
or process, showing the steps as boxes of various kinds, and their order by
connecting them with arrows. This diagrammatic representation illustrates
a solution model to a given problem. Flowcharts are used in analyzing,
designing, documenting or managing a process or program in various fields.

Pseudo Code

Pseudo Code is an informal high-level description of the operating principle
of a computer program or other algorithm. It uses the structural conventions
of a normal programming language, but is intended for human reading rather
than machine reading. Pseudo Code typically omits details that are essential
for machine understanding of the algorithm, such as variable declarations,
system-specific code and some subroutines. The programming language is
augmented with natural language description details, where convenient, or
with compact mathematical notation. The purpose of using pseudo code is
that it is easier for people to understand than conventional programming
language code, and that it is an efficient and environment-independent de-
scription of the key principles of an algorithm. It is commonly used in text-
books and scientific publications that are documenting various algorithms,
and also in planning of computer program development, for sketching out
the structure of the program before the actual coding takes place.

Programming Languages

Since programmers can read source code of high level programming languages
with ease one could use any programming language that the intended audi-
ence knows and understands.

Drakon-Charts

DRAKON is an algorithmic visual programming language developed within
the Buran space project following ergonomic design principles. The language
provides a uniform way to represent flowcharts of any complexity that are
easy to read and understand.

1.4. CLASSIFICATION 13

Control Tables

Control tables are tables that control the control flow or play a major part
in program control. There are no rigid rules about the structure or content
of a control table its qualifying attribute is its ability to direct control flow
in some way through ”execution” by a processor or interpreter. The de-
sign of such tables is sometimes referred to as table-driven design (although
this typically refers to generating code automatically from external tables
rather than direct run-time tables). In some cases, control tables can be
specific implementations of finite-state-machine-based automata-based pro-
gramming. If there are several hierarchical levels of control table they may
behave in a manner equivalent to UML state machines

In this course

In this course we will primary use pseudo code and programming language
source code to express algorithms. In both cases we will adopt a C-based
language.

1.4 Classification

There are various ways to classify algorithms, each with its own merits.

1.4.1 By implementation
Recursion

A recursive algorithm is one that invokes (makes reference to) itself repeat-
edly until a certain condition (also known as termination condition) matches,
which is a method common to functional programming. Iterative algorithms
use repetitive constructs like loops and sometimes additional data structures
like stacks to solve the given problems. Some problems are naturally suited
for one implementation or the other. For example, towers of Hanoi || is well
understood using recursive implementation. Every recursive version has an
equivalent (but possibly more or less complex) iterative version, and vice-
versa.

!Detailed explaniation of Tower of Hanoi is found here: https://en.wikipedia.org/
wiki/Tower_of_Hanoi

14 CHAPTER 1. INTRODUCTION

Logical

An algorithm may be viewed as controlled logical deduction. This notion
may be expressed as: Algorithm = logic 4 control.[61] The logic component
expresses the axioms that may be used in the computation and the control
component determines the way in which deduction is applied to the axioms.
This is the basis for the logic programming paradigm. In pure logic program-
ming languages the control component is fixed and algorithms are specified
by supplying only the logic component. The appeal of this approach is the
elegant semantics: a change in the axioms has a well-defined change in the
algorithm. Algorithms can be specified in English (i.e., Natural Language),
as computer program, or even as a hardware design as long as it specifics
precise description of the computational procedures to be followed. Most of
the time we avoid using natural language for expressing algorithms due to its
ambiguity, especially for complex algorithms. Instead when communicating
an algorithm with other people we use one of the following languages’

Serial, parallel or distributed

Algorithms are usually discussed with the assumption that computers execute
one instruction of an algorithm at a time. Those computers are sometimes
called serial computers. An algorithm designed for such an environment is
called a serial algorithm, as opposed to parallel algorithms or distributed
algorithms. Parallel algorithms take advantage of computer architectures
where several processors can work on a problem at the same time, whereas
distributed algorithms utilize multiple machines connected with a network.
Parallel or distributed algorithms divide the problem into more symmetrical
or asymmetrical subproblems and collect the results back together. The
resource consumption in such algorithms is not only processor cycles on
each processor but also the communication overhead between the processors.
Some sorting algorithms can be parallelized efficiently, but their communica-
tion overhead is expensive. Iterative algorithms are generally parallelizable.
Some problems have no parallel algorithms, and are called inherently serial
problems.

Deterministic or non-deterministic

Deterministic algorithms solve the problem with exact decision at every step
of the algorithm whereas non-deterministic algorithms solve problems via
guessing although typical guesses are made more accurate through the use
of heuristics.

1.4. CLASSIFICATION 15

Exact or approximate

While many algorithms reach an exact solution, approximation algorithms
seek an approximation that is closer to the true solution. Approximation can
be reached by either using a deterministic or a random strategy. Such algo-
rithms have practical value for many hard problems. One of the examples of
an approximate algorithm is the Knapsack problem. The Knapsack problem
is a problem where there is a set of given items. The goal of the problem is
to pack the knapsack to get the maximum total value. Each item has some
weight and some value. Total weight that we can carry is no more than some
fixed number X. So, we must consider weights of items as well as their value.

Quantum Algorithm

They run on a realistic model of quantum computation. The term is usu-
ally used for those algorithms which seem inherently quantum, or use some
essential feature of quantum computation such as quantum superposition or
quantum entanglement.

1.4.2 By design paradigm

Another way of classifying algorithms is by their design methodology or
paradigm. There is a certain number of paradigms, each different from the
other. Furthermore, each of these categories include many different types of
algorithms. Some common paradigms are:

Brute-force or exhaustive search

This is the naive method of trying every possible solution to see which is
best.

Divide and conquer

A divide and conquer algorithm repeatedly reduces an instance of a problem
to one or more smaller instances of the same problem (usually recursively)
until the instances are small enough to solve easily. One such example of
divide and conquer is merge sorting. Sorting can be done on each segment
of data after dividing data into segments and sorting of entire data can be
obtained in the conquer phase by merging the segments. A simpler variant
of divide and conquer is called a decrease and conquer algorithm, that solves
an identical subproblem and uses the solution of this subproblem to solve
the bigger problem. Divide and conquer divides the problem into multiple

16 CHAPTER 1. INTRODUCTION

subproblems and so the conquer stage is more complex than decrease and
conquer algorithms. An example of decrease and conquer algorithm is the
binary search algorithm.

Search and Enumeration

Many problems (such as playing chess) can be modeled as problems on
graphs. A graph exploration algorithm specifies rules for moving around
a graph and is useful for such problems. This category also includes search
algorithms, branch and bound enumeration and backtracking.

Randomized algorithm

Such algorithms make some choices randomly (or pseudo-randomly). They
can be very useful in finding approximate solutions for problems where find-
ing exact solutions can be impractical (see heuristic method below). For
some of these problems, it is known that the fastest approximations must
involve some randomness.Whether randomized algorithms with polynomial
time complexity can be the fastest algorithms for some problems is an open
question known as the P versus NP problem. There are two large classes of
such algorithms:

1. Monte Carlo algorithms return a correct answer with high-probability.
E.g. RP is the subclass of these that run in polynomial time.

2. Las Vegas algorithms always return the correct answer, but their run-
ning time is only probabilistically bound, e.g. ZPP.

Reduction of Complexity

This technique involves solving a difficult problem by transforming it into a
better known problem for which we have (hopefully) asymptotically optimal
algorithms. The goal is to find a reducing algorithm whose complexity is not
dominated by the resulting reduced algorithm’s. For example, one selection
algorithm for finding the median in an unsorted list involves first sorting the
list (the expensive portion) and then pulling out the middle element in the
sorted list (the cheap portion). This technique is also known as transform
and conquer.

1.4.3 Optimization Problems

For optimization problems there is a more specific classification of algorithms;
an algorithm for such problems may fall into one or more of the general

1.4. CLASSIFICATION 17

categories described above as well as into one of the following:

Linear programming

When searching for optimal solutions to a linear function bound to linear
equality and inequality constraints, the constraints of the problem can be
used directly in producing the optimal solutions. There are algorithms that
can solve any problem in this category, such as the popular simplex algorithm.
Problems that can be solved with linear programming include the maximum
flow problem for directed graphs. If a problem additionally requires that one
or more of the unknowns must be an integer then it is classified in integer
programming. A linear programming algorithm can solve such a problem if
it can be proved that all restrictions for integer values are superficial, i.e., the
solutions satisfy these restrictions anyway. In the general case, a specialized
algorithm or an algorithm that finds approximate solutions is used, depending
on the difficulty of the problem.

Dynamic programming

When a problem shows optimal substructures meaning the optimal solution
to a problem can be constructed from optimal solutions to subproblems and
overlapping subproblems, meaning the same subproblems are used to solve
many different problem instances, a quicker approach called dynamic pro-
gramming avoids recomputing solutions that have already been computed.
For example, FloydWarshall algorithm, the shortest path to a goal from a
vertex in a weighted graph can be found by using the shortest path to the
goal from all adjacent vertices. Dynamic programming and memoization go
together. The main difference between dynamic programming and divide and
conquer is that subproblems are more or less independent in divide and con-
quer, whereas subproblems overlap in dynamic programming. The difference
between dynamic programming and straightforward recursion is in caching
or memoization of recursive calls. When subproblems are independent and
there is no repetition, memoization does not help; hence dynamic program-
ming is not a solution for all complex problems. By using memoization or
maintaining a table of subproblems already solved, dynamic programming
reduces the exponential nature of many problems to polynomial complexity.

The Greedy Method

A greedy algorithm is similar to a dynamic programming algorithm in that
it works by examining substructures, in this case not of the problem but
of a given solution. Such algorithms start with some solution, which may

18 CHAPTER 1. INTRODUCTION

be given or have been constructed in some way, and improve it by making
small modifications. For some problems they can find the optimal solution
while for others they stop at local optima, that is, at solutions that cannot
be improved by the algorithm but are not optimum. The most popular use
of greedy algorithms is for finding the minimal spanning tree where finding
the optimal solution is possible with this method. Huffman Tree, Kruskal,
Prim, Sollin are greedy algorithms that can solve this optimization problem.

The Heuristic Method

In optimization problems, heuristic algorithms can be used to find a solution
close to the optimal solution in cases where finding the optimal solution
is impractical. These algorithms work by getting closer and closer to the
optimal solution as they progress. In principle, if run for an infinite amount
of time, they will find the optimal solution. Their merit is that they can find
a solution very close to the optimal solution in a relatively short time. Such
algorithms include local search, tabu search, simulated annealing, and genetic
algorithms. Some of them, like simulated annealing, are non-deterministic
algorithms while others, like tabu search, are deterministic. When a bound
on the error of the non-optimal solution is known, the algorithm is further
categorized as an approximation algorithm.

1.4.4 By Complexity

Algorithms can be classified by the amount of time they need to complete
compared to their input size:

e Constant time: if the time needed by the algorithm is the same, re-
gardless of the input size. E.g. an access to an array element.

e Linear time: if the time is proportional to the input size. E.g. the
traverse of a list.

e Logarithmic time: if the time is a logarithmic function of the input
size. E.g. binary search algorithm.

e Polynomial time: if the time is a power of the input size. E.g. the
bubble sort algorithm has quadratic time complexity.

e Exponential time: if the time is an exponential function of the input
size. E.g. Brute-force search.

Some problems may have multiple algorithms of differing complexity,
while other problems might have no algorithms or no known efficient

1.5. PROBLEMS THAT COULD BE SOLVED BY ALGORITHMS 19

algorithms. There are also mappings from some problems to other
problems. Owing to this, it was found to be more suitable to classify the
problems themselves instead of the algorithms into equivalence classes
based on the complexity of the best possible algorithms for them.

1.4.5 By Field of Study

Every field of science has its own problems and needs efficient algorithms.
Related problems in one field are often studied together. Some example
classes are search algorithms, sorting algorithms, merge algorithms, numeri-
cal algorithms, graph algorithms, string algorithms, computational geometric
algorithms, combinatorial algorithms, medical algorithms, machine learning,
cryptography, data compression algorithms and parsing techniques.

Fields tend to overlap with each other, and algorithm advances in one
field may improve those of other, sometimes completely unrelated, fields.
For example, dynamic programming was invented for optimization of resource
consumption in industry, but is now used in solving a broad range of problems
in many fields.

1.5 Problems That Could be Solved by Algo-
rithms

Obviously sorting and searching are not the only areas where algorithms
play great role. The following are examples of areas whereby algorithms
serve invincible function.

1.5.1 Human Genome Project

The Human Genome Project has made great progress toward the goals of
identifying all the 100,000 genes in human DNA, determining the sequences
of the 3 billion chemical base pairs that make up human DNA, storing this
information in databases, and developing tools for data analysis. Each of
these steps requires sophisticated algorithms. Although the solutions to the
various problems involved are beyond the scope of this book, many methods
to solve these biological problems use ideas from several of the chapters in this
book, thereby enabling scientists to accomplish tasks while using resources
efficiently. The savings are in time, both human and machine, and in money,
as more information can be extracted from laboratory techniques.

20 CHAPTER 1. INTRODUCTION

1.5.2 The Internet

The Internet enables people all around the world to quickly access and re-
trieve large amounts of information. With the aid of clever algorithms, sites
on the Internet are able to manage and manipulate this large volume of
data. Examples of problems that make essential use of algorithms include
finding good routes on which the data will travel, and using a search engine
to quickly find pages on which particular information resides.

1.5.3 E-Commerce

Electronic commerce enables goods and services to be negotiated and ex-
changed electronically, and it depends on the privacy of personal informa-
tion such as credit card numbers, passwords, and bank statements. The core
technologies used in electronic commerce include public-key cryptography
and digital signatures, which are based on numerical algorithms and number
theory.

1.5.4 Manufacturing

Manufacturing and other commercial enterprises often need to allocate scarce
resources in the most beneficial way. An oil company may wish to know
where to place its wells in order to maximize its expected profit. A political
candidate may want to determine where to spend money buying campaign
advertising in order to maximize the chances of winning an election. An
airline may wish to assign crews to flights in the least expensive way possi-
ble, making sure that each flight is covered and that government regulations
regarding crew scheduling are met. An Internet service provider may wish to
determine where to place additional resources in order to serve its customers
more effectively. All of these are examples of problems that can be solved
using linear programming.

1.5.5 Fourier Transform

Not every problem solved by algorithms has an easily identified set of candi-
date solutions. For example, suppose we are given a set of numerical values
representing samples of a signal, and we want to compute the discrete Fourier
transform of these samples. The discrete Fourier transform converts the time
domain to the frequency domain, producing a set of numerical coefficients,
so that we can determine the strength of various frequencies in the sam-
pled signal. In addition to lying at the heart of signal processing, discrete

1.6. RELATED ISSUES 21

Fourier transforms have applications in data compression and multiplying
large polynomials and integers.

1.5.6 Longest subsequence problem

Given two ordered sequences of symbols we wish to find the longest common
subsequence of these sequences. The length of the longest common subse-
quence of the two lists gives one measure of how similar these two sequences
are. For example, if two sequences are base pairs in DNA strands, then we
might consider them similar if they have a long common subsequence. For
lists X (with m symbols) and Y (with n symbols), there exist 2™ & 2"
subsequences of X and Y, respectively. All these problems have a couple
of common characteristics shared by many inserting algorithmic problems.
These characteristics are

e The problems have many candidate solutions, most of which are in-
correct (i.e., do not solve the problem) and finding those that can is
often quite challenging. Finding the "best” from those that solve the
problem is an even greater challenge.

e They have a practical application

1.6 Related Issues

1.6.1 Data structure

Data structure is a way to store and organize data in order to facilitate
access and modification. No single data structure works well for all types
of problems. When solving problems with algorithms, the underlying data
structure often determines the applicability, efficiency and correctness of algo-
rithms that try to solve a problem. Hence, choosing the right data structure
is as important as choosing the right algorithm to solve a problem.

1.6.2 Parallelism

The computing world is moving to multiple processing cores rather than
a single powerful CPU due to physical limitation. Algorithms, therefore,
should be designed with this fact in mind, hence, considering parallel com-
puting. A parallel algorithm, as opposed to a traditional serial algorithm,
is an algorithm which can be executed a piece at a time on many different

22 CHAPTER 1. INTRODUCTION

processing devices, and then combined together again at the end to get the
correct result.

Algorithms vary significantly in how parallelizable they are, ranging from
easily parallelizable to completely unparallelizable. Further, a given
problem may accommodate different algorithms, which may be more or less
parallelizable. Some problems are easy to divide up into pieces in this way
these are called embarrassingly parallel problems. For example, splitting
up the job of checking all of the numbers from one to a hundred thousand
to see which are primes could be done by assigning a subset of the numbers
to each available processor, and then putting the list of positive results back
together.

Some problems cannot be split up into parallel portions, as they require
the results from a preceding step to effectively carry on with the next step
these are called inherently serial problems. Examples include iterative numer-
ical methods, such as Newton’s method, iterative solutions to the three-body
problem, and most of the available algorithms to compute pi (7).

1.6.3 Hard Problems

Most of this course is about efficient algorithms. Our usual measure of effi-
ciency is speed, i.e., how long an algorithm takes to produce its result. There
are some problems, however, for which no efficient solution is known. Chap-
ter 34 of the text book studies an interesting subset of these problems, which
are known as NP-complete.

Why are NP-complete problems interesting? First, although no efficient
algorithm for an NP-complete problem has ever been found, nobody has ever
proven that an efficient algorithm for one cannot exist. In other words, no one
knows whether or not efficient algorithms exist for NP-complete problems.
Second, the set of NP-complete problems has the remarkable property that
if an efficient algorithm exists for any one of them, then efficient algorithms
exist for all of them. This relationship among the NP-complete problems
makes the lack of efficient solutions all the more tantalizing. Third, several
NP-complete problems are similar, but not identical, to problems for which
we do know of efficient algorithms. Computer scientists are intrigued by
how a small change to the problem statement can cause a big change to the
efficiency of the best known algorithm.

You should know about NP-complete problems because some of them
arise surprisingly often in real applications. If you are called upon to produce
an efficient algorithm for an NP-complete problem, you are likely to spend
a lot of time in a fruitless search. If you can show that the problem is NP-
complete, you can instead spend your time developing an efficient algorithm

1.7. FEW EXAMPLE PROBLEMS & ALGORITHMS 23

that gives a good, but not the best possible, solution.

As a concrete example, consider a delivery company with a central depot.
Each day, it loads up each delivery truck at the depot and sends it around
to deliver goods to several addresses. At the end of the day, each truck must
end up back at the depot so that it is ready to be loaded for the next day.
To reduce costs, the company wants to select an order of delivery stops that
yields the lowest overall distance traveled by each truck. This problem is the
well-known ”traveling-salesman problem,” and it is NP-complete. It has no
known efficient algorithm. Under certain assumptions, however, we know of
efficient algorithms that give an overall distance which is not too far above
the smallest possible.

1.7 Few Example Problems & Algorithms

The following are few of the simple problems that can be solved with rela-
tively very simple algorithms. Students are assumed to be familiar with most
of them, hence, they are presented here to show that the notion of algorithm
is not that new to students.

1.7.1 GCD and LCM

Greatest Common Divisor

The greatest common divisor (GCD) of two or more integers, which are not
all zero, is the largest positive integer that divides each of the integers and is
often denoted as GCD(a,b) . It’s also known as the greatest common factor
(GCF), highest common factor (HCF), greatest common measure (GCM),
or highest common divisor.
Problem Statement

Input: Two integers of a and b

Output: An integer ¢ such that ¢ < min(a,b) and i is the biggest
number that can divide both a and b

Euclidean algorithm

The Euclidean algorithm, or Euclid’s algorithm, is an efficient method for
computing the greatest common divisor (GCD) of two numbers, the largest
number that divides both of them without leaving a remainder. It is named
after the ancient Greek mathematician Euclid, who first described it in Eu-
clid’s Elements (c. 300 BC).

Pseudocode implementation

24 CHAPTER 1. INTRODUCTION

procedure gecd(a, b)
while b 0
t =b
b=a%b
a =1t
end while
return a
end procedure

Least Common Multiple

The least common multiple, lowest common multiple, or smallest common
multiple of two integers a and b, usually denoted by LCM(a, b), is the small-
est positive integer that is divisible by both a and b. Since division of integers
by zero is undefined, this definition has meaning only if a and b are both dif-
ferent from zero. However, some authors define LCM(a,0) as 0 for all a,
which is the result of taking the LCM to be the least upper bound in the
lattice of divisibility.
Problem Statement

Input: Two integers of a and b

Output: An integer ¢ such that i is the smallest number that is divisible
by both a and b

Example Applications

e A salesman goes to New York every 15 days for one day and another
every 24 days, also for one day. Today, both are in New York. After
how many days both salesman will be again in New York on same day?

e A bell rings every 18 seconds, another every 60 seconds. At 5.00 pm
the two ring simultaneously. At what time will the bells ring again at
the same time?

e Ato Abebe has 120 crayons and 30 pieces of paper to give to his stu-
dents. What is the largest number of students he can have in his class
so that each student gets equal number of crayons and equal number
of paper.

e Mekdes has two pieces of cloth. One piece is 72 inches wide and the
other piece is 90 inches wide. She wants to cut both pieces into strips
of equal width that are as wide as possible. How wide should she cut
the strips?

1.7. FEW EXAMPLE PROBLEMS & ALGORITHMS 25

1.7.2 Searching
The Problem

The search problem is one of the most frequent in computer science. A
search algorithm is any algorithm which solves the search proble namely,
to retrieve information stored within some data structure, or calculated in
the search space of a problem domain. Examples of such structures include
but are not limited to a linked list, an array data structure, or a search tree.
The appropriate search algorithm often depends on the data structure being
searched, and may also include prior knowledge about the data. Searching
also encompasses algorithms that query the data structure, such as the SQL
SELECT command.

In this section we will limit our discussion to linear data structures such as
array and linked list when to define our search problem. Hence our definition
of the searching problem will become, given a a list of items and an item to
look for in the list, called key, the task is to go through the list and find /return
the location of the key with in the collection, if it exists. If the key is not
found in the list the algorithm should return a value that clearly indicates
that the key was not found, often this is by returning -1 since it is assumed
the location of items in the collection is to mean the index of the items within
the collection which normally starts from zero and increments by one upto
the last item.

Linear Search

Linear search or sequential search is a method for finding a target value
within a list. It sequentially checks each element of the list for the target
value until a match is found or until all the elements have been searched.

Linear search runs in at worst linear time and makes at most n compar-
isons, where n is the length of the list. If each element is equally likely to
be searched, then linear search has an average case of n/2 comparisons, but
the average case can be affected if the search probabilities for each element
vary. Linear search is rarely practical because other search algorithms and
schemes, such as the binary search algorithm and hash tables, allow signifi-
cantly faster searching for all but short lists. However, since linear search is
does not assume the input to be in any particular sorting order it entertains
a larger problem domain than the alternative algorithms. What’s more, it
is easy for users to understand linear search as the steps in linear search are
common in many real life searching scenarios.

2A more formal definition of the search problem can be found here https://en.
wikipedia.org/wiki/Search_problem

26 CHAPTER 1. INTRODUCTION

Problem Statement

Input: A collection of n numbers {ag, ai,as...a,_1} and a single item
key

Output: The first index ¢ such that a; = key. If no such item is found
with in the collection return —1

Linear search sequentially checks each element of the list until it finds an
element that matches the target value. If the algorithm reaches the end of
the list, the search terminates unsuccessfully.
Basic algorithm

Given a list A of n elements with values or records {ag, a1, as...a,_1}, and
target value K, the following subroutine uses linear search to find the index
of the target K in A
Pseudocode implementation

procedure linearSearch (A,K)
location = —1
for i = 0 to n do
if A[i] = K then
location = i
break
end if
end for
return location
end procedure

Binary Search

Binary Search, also known as half-interval search, logarithmic search, or bi-
nary chop, is a search algorithm that finds the position of a target value
within a sorted list. Binary search compares the target value to the middle
element of the array. If they are not equal, the half in which the target cannot
lie is eliminated and the search continues on the remaining half, again taking
the middle element to compare to the target value, and repeating this until
the target value is found. If the search ends with the remaining half being
empty, the target is not in the collection. Even though the idea is simple,
implementing binary search correctly requires attention to some subtleties
about its exit conditions and midpoint calculation.

Binary search is generally more efficient than linear search but requires
the input to be sorted. If the input is completely sorted the algorithm will
fail to find the target item.

Problem Statement

1.7. FEW EXAMPLE PROBLEMS & ALGORITHMS 27

Input: A sorted collection of m numbers {aq, as, as...a,_1} and a single
item key

Output: The first index ¢ such that a; = key. If no such item is found
with in the collection return —1
Procedure

1. Set L to 0 and R to nl.
2. If L > R, the search terminates as unsuccessful.

3. Set m (the position of the middle element) to the floorof(L + R)/2,
which is the greatest integer less than or equal to (L + R)/2.

4. If a,, < K, set L to m+ 1 and go to step 2.
5. If a,, > K, set R to m1 and go to step 2.

6. Now a,, = K, the search is done; return m.

This iterative procedure keeps track of the search boundaries with the two
variables L and R. The procedure may be expressed in pseudocode as follows,
where the variable names and types remain the same as above, floor is the
floor function, and unsuccessful refers to a specific variable that conveys the
failure of the search.

Pseudocode implementation

procedure binarySearch (A,K)

L=20
R=n 1
location = —1

while L <= R
m = floor ((L + R) / 2)
if Alm] <K
L=m+ 1
else if A[m] > K:
R=m-1
else
location = m
break
end while
return location
end procedure

28 CHAPTER 1. INTRODUCTION

1.7.3 Optimum Finding

Searching for a given item with in a list is an interesting problem in computer
science as described in the previous section. However, the aforementioned
form of searching is not the only version that is relevant in computer science.
In fact, we have a number of variations that could help in addressing related
problems such as sorting. A few of these are presented here.

Find Max

The first variation of the search problem defined earlier is the problem of find-
ing maximum. Put simply, given a list of elements (numbers for simplicity)
as an input the task is to find the element with highest value.
Problem Statement

Input: A collection of m numbers {ag, a;, as...a,_1}

Output: The first index j such that a; > a,Vi € 1.n .
The problem could be modified to search for the smallest item by altering the
problem statement such that the a; > a;V7 € 1..n becomes a; < a;Vi € 1..n
Algorithm
The algorithm in the following pseudocode starts by assuming that the first
element is the maximum and traverses through the list of items to check if
there exists an item that is greater than the initial assumption, and if so,
will update the assumption by saving this new item.
Pseudocode implementation

procedure findMax (A)

max = 0
for i =1 to n do
if A[i] > A[max] then
max = i
end if
end for

return max
end procedure

Find maximum and minimum

As modification to the Find Max problem the Find maximum and minimum
problem is defined by the following problem statement.
Problem Statement

Input: A collection of m numbers {ag, a;, as...a,_1}

1.7. FEW EXAMPLE PROBLEMS & ALGORITHMS 29

Output: The first index j such that a; > @;Vi € 1..n and the first index
k such that a, < a;Vi € 1..n
Algorithm
The algorithm in the following pseudocode is similar to the Find Max al-
gorithm but instead of iterating to find a single value it instead checks two
conditions with two assumptions.
Pseudocode implementation

procedure findMaxMin (A)
maxLocation = 0
minLocation = 0
for i =1 to n do
if A[i] > A[maxLocation] then
maxLocation = i
end if
if A[i] < A[minLocation] then
minLocation = i
end if
end for
return maxLocation, minLocation
end procedure

Find the top two maximums Max,andMaxs

This problem is an extension of find max problem discussed earlier. In this
problem our objective is to find the top two elements instead of just on top
element as we did in the previous example.
Problem Statement

Input: A collection of m numbers {ag, a1, as...a, 1}

Output: The first indices j and % such that a; > a;Vi € 1..n and a; >
apVk € 1..nexcepty .
Algorithm
The algorithm in the following pseudocode starts by assuming that the first
element is the two maximums we are looking for and traverses through the
list of items to check if there exists an item that is greater than the initial
assumption, and if so, will update the assumption by saving this new item.
As opposed to the findmax algorithm, in this solution we also track the
second maximum number
Pseudocode implementation

procedure find2Max (A)
maxl = 0

30 CHAPTER 1. INTRODUCTION

max2 = 0
for i =1 to n do
if A[i] > A[maxl] then
max2 = maxl
maxl = i
else if A[i] > A[max2]| then
max2 = i
end if
end for

return maxl, max2
end procedure

1.7.4 Sorting

Sorting algorithm is an algorithm that puts elements of a list in a certain
order. The most-used orders are numerical order and lexicographical order.
Efficient sorting is important for optimizing the use of other algorithms (such
as search and merge algorithms) which require input data to be in sorted
lists; it is also often useful for canonicalizing data and for producing human-
readable output. More formally, the output must satisfy two conditions:

e The output is in non-decreasing order (each element is no smaller than
the previous element according to the desired total order);

e The output is a permutation (reordering but with all of the original
elements) of the input.

Further, the data is often taken to be in an array, which allows random
access, rather than a list, which only allows sequential access, though often
algorithms can be applied with suitable modification to either type of data.
Problem Statement

Input: A sequence of n numbers {ay, as, as...a,}

Output: A permutation (reordering) {a;, a;;, @i, ..., am } of the input se-
quence such that {a; < ay; < ay; < ... < ap}

Bubble Sort

Bubble sort, sometimes referred to as sinking sort, is a simple sorting algo-
rithm that repeatedly steps through the list to be sorted, compares each pair
of adjacent items and swaps them if they are in the wrong order. The pass
through the list is repeated until no swaps are needed, which indicates that
the list is sorted. The algorithm, which is a comparison sort, is named for

1.7. FEW EXAMPLE PROBLEMS & ALGORITHMS 31

the way smaller or larger elements ”bubble” to the top of the list. Although
the algorithm is simple, it is too slow and impractical for most problems even
when compared to insertion sort. It can be practical if the input is usually
in sorted order but may occasionally have some out-of-order elements nearly
in position.

Step-by-step example

Let us take the array of numbers "5 1 4 2 8”7, and sort the array from
lowest number to greatest number using bubble sort. In each step, elements
written in bold are being compared. Three passes will be required.

First Pass

(51428) (15428), Here, algorithm compares the first two elements,
and swaps since 5 > 1.

(15428) (14528), Swap since 5 § 4

(14528) (14258), Swap since 5 §, 2

(14258) (1425 8), Now, since these elements are already in order
(8 > 5), algorithm does not swap them.
Second Pass

(14258) (14258)

(14258) (12458), Swap since 4 > 2

(12458)(12458)

(12458) (12458)

Now, the array is already sorted, but the algorithm does not know if it is
completed. The algorithm needs one whole pass without any swap to know
it is sorted.

Third Pass
(12458) (12458)
(12458) (12458)
(12458) (12458)
(12458) (12458)

Pseudocode implementation

procedure bubbleSort (A)
for i = n—1 down to 0 do
for j =0 to i do
if A[j+1] < A[j] then
tmp = A[j+1]

32 CHAPTER 1. INTRODUCTION

Alj+1] = A[j]
Alj] = tmp
end if
end for
end for
end procedure

Insertion Sort

Insertion sort is a simple sorting algorithm that builds the final sorted array
(or list) one item at a time. It is much less efficient on large lists than more
advanced algorithms such as quicksort, heapsort, or merge sort. However,
insertion sort provides several advantages:

e Simple implementation: Jon Bentley shows a three-line C version, and
a five-line optimized version.

e Efficient for (quite) small data sets, much like other quadratic sorting
algorithms

e More efficient in practice than most other simple quadratic (i.e., O(n?)
) algorithms such as selection sort or bubble sort

e Adaptive, i.e., efficient for data sets that are already substantially
sorted: the time complexity is O(nk) when each element in the input
is no more than k places away from its sorted position

e Stable; i.e., does not change the relative order of elements with equal
keys

e In-place; i.e., only requires a constant amount O(1) of additional mem-
ory space

e Online; i.e., can sort a list as it receives it

When people manually sort cards in a bridge hand, most use a method that
is similar to insertion sort. Example: The following listing shows the steps
for sorting the sequence 3, 7, 4, 9, 5, 2, 6, 1. In each step, the key under
consideration is underlined. The key that was moved (or left in place because
it was biggest yet considered) in the previous step is shown in bold.

37495261
37495261
37495261

1.7. FEW EXAMPLE PROBLEMS & ALGORITHMS 33

34795261
34795261
34579261
23457961
23456791
12345679
Pseudocode implementation
procedure insertionSort(A : list of sortable items)
for j = 2 to length [A]
do key = A[j]
// Insert A[j] into the sorted sequence A[l... j—1]
i=] 1

while i>0 and A[i]>key
do A[T + 1] A [i]
i=i 1

end while

A[i+1] = key
end for
end procedure

Selection Sort

selection sort is a sorting algorithm, specifically an in-place comparison sort.
It has O(n?) time complexity, making it inefficient on large lists, and gener-
ally performs worse than the similar insertion sort. Selection sort is noted
for its simplicity, and it has performance advantages over more complicated
algorithms in certain situations, particularly where auxiliary memory is lim-
ited.

The algorithm divides the input list into two parts: the sublist of items
already sorted, which is built up from left to right at the front (left) of the
list, and the sublist of items remaining to be sorted that occupy the rest
of the list. Initially, the sorted sublist is empty and the unsorted sublist
is the entire input list. The algorithm proceeds by finding the smallest (or
largest, depending on sorting order) element in the unsorted sublist, exchang-
ing (swapping) it with the leftmost unsorted element (putting it in sorted
order), and moving the sublist boundaries one element to the right.

Step-by-step example

34 CHAPTER 1. INTRODUCTION

Sorted sublist == ()
Unsorted sublist == (11, 25, 12, 22,64)
Least element in unsorted list == 11

Sorted sublist == (11)
Unsorted sublist == (25, 12, 22, 64)
Least element in unsorted list == 12

Sorted sublist == (11, 12)
Unsorted sublist == (25, 22, 64)
Least element in unsorted list == 22

Sorted sublist == (11, 12, 22)
Unsorted sublist == (25, 64)
Least element in unsorted list == 25

Sorted sublist == (11, 12, 22, 25)
Unsorted sublist == (64)
Least element in unsorted list == 64

Sorted sublist == (11, 12, 22, 25, 64)
Unsorted sublist == ()

Pseudocode implementation

procedure selectionSort(A : list of sortable items)

for j = 0 to n—1 do

iMin = j;
for = j+1 to n do
if A[i] < A[iMin]|
iMin = i;

end if

end for

if iMin != j
swap(A[j], AliMin]);
end if

end for

end procedure

1.7.5 Peak Finding

In a given list of items a peak is defined as an element which is larger or
equal to both the elements on its sides. Problem Statement

Input: A sequence of m numbers {a, as, as...a,}

Output: An element a such that b < a > ¢ where bandc are the elements
in the list which are immediately to the left and right side of element a,
respectively.

1.7. FEW EXAMPLE PROBLEMS & ALGORITHMS 35

Sample Solution

One simple is solution is presented in the pseudocode below. A more efficient
solution is presented later in this course.
Pseudocode implementation

procedure peakFindingNaive (A)

peak = —1
for i = 0 to n—1 do
left = max(0, i-1) // boundary case
right = min(n—1, i+1) // boundary case
if left >= A[i] and right <= A[i]
peak = A[1i]
break
end if
end for

return peak;
end procedure

1.7.6 Summary

In this lecture we discussed what algorithms are and their role in the mod-
ern world of computing. We highlighted the important characteristics of
algorithms that we want to uphold especially

e Correctness: in all input instances

e Efficiency: especially for large input sizes

1.7.7 Review Questions

1. It is often required to count the number of occurrences of an element
within a list. Write the problem statement and an algorithm to the
count problem.

2. Write the problem statement and algorithm of the Ethiopian Multipli-
cation Algorithm presented in class.

3. Write the problem statement and algorithm by modifying the find max
problem presented earlier. Modify it such that instead of finding the
maximum or the top two elements as we did in the examples before,
a number m is provided as an input and the task is to find the top m
values in the list.

36

CHAPTER 1. INTRODUCTION

. Another modification to the find max problem is to find the m** max-

imum value. As opposed to the previous question the task is to find a
single number which is greater than all elements in the list except the
top m — 1 elements.

. Other than speed, what other measures of efficiency might one use in

a real-world setting?

. Come up with a real-world problem in which only the best solution will

do. Then come up with one in which a solution that is ”approximately”
the best is good enough.

. Give an example of an application that requires algorithmic content

at the application level, and discuss the function of the algorithms
involved.

1.7.8 Further Reading

e In the first chapter of the book Algorithm Design Jon Kleinberg and

Eva Tardos present a good example for the need to study Algorithms.

Algorithm does not have a generally accepted formal definition. Re-
searchers are actively working on this problem. Algorithm charac-
terizations are attempts to formalize the word algorithm. There is
a wikipedia article presenting some of the ”characterizations” of the
notion of "algorithm” in more detail here: https://en.wikipedia.
org/wiki/Algorithm_characterizations,

